

Dynamics of the oxygen minimum zone on the Namibian shelf: a model perspective

Geochemistry and **E**cology of the **N**amibian **U**pwelling **S**ystem

Anja Eggert & Martin Schmidt

Leibniz Institute for Baltic Sea Research, Warnemünde (Germany)

Outline and scope

• Working hypothesis:

24-26 September 2013

- **The seasonalvariability of low oxygen water on the continental shelf off Namibia is driven primarily byalongshore advection and local oxygen concentrations are only modified through biological consumption.**
- Tool:
	- Numerical simulation with a regional, 3D coupled hydrodynamic-biogeochemical ecosystem model: 1999-now
- This presentation:
	- Relevant processes (local biological and large-scale physical) controlling the oxygen budget on the Namibian shelf

Coupled hydrodynamic-biogeochemical model

3D Hydrodynamic Model (GFDL, USA)

Modular Ocean Model (MOM-5)

3D Biogeochemical Model (IOW, Germany)

Nutrient-Phytoplankton-Zooplankton-Detritus

 $\underline{\text{(NP}_{\underline{3}}Z_{\underline{3}}\text{D)-Model}}$

Mats of giant sulfur bacteria **Collect (IOW, Germany)**

Sediment Model

Realistic atmosphericforcing

• Wind speed

- Wind direction
	- Air pressure
- Air temperature
- Solar radiation
	- Cloudiness
	- Precipitation

• etc.

Large scale circulation

- South Atlantic Central Water (SACW) is transported with the poleward undercurrent (PUC) onto the Namibian shelf
- Eastern SACW (ESACW) spreads northward with the Benguela Current (BC) along the southwest African shelf edge

PUC: advection of nutrient rich but oxygen poor water masses

NatMIRC

24-26 September 2013

Relevant processes

$$
\frac{\partial [O_2]}{\partial t} = \left(\frac{\partial [O_2]}{\partial t}\right)_{dyn} + \left(\frac{\partial [O_2]}{\partial t}\right)_{bio} + J_{flux}
$$

Hydrodynamic transport

- Lateral advection
- Vertical advection

Biological sourcesand sinks

- + New and regenerated primary production
- Aerobic remineralisation of sinking detritus
- Zooplankton respiration (reduced at hypoxic conditions)
- **Nitrification**

Biological and physical processes contribute to the variability in oxygen

Extended Oxygen Minimum Zones

Low ventilation of the near bottom water

Oxygen time series from mooring off Walvis Bay

Field data, mooring: 120 m Model results: 120 m

Mohrholz, Bartholomae, van der Plas & Lass 2008

- Good simultion of hypoxic near bottom water (120 m) on the shelf
- Anoxic conditions correlate with an SACW fraction >55%

 $[O_2]$ over the shelf depends to a high extent on the water mass composition

NatMIRC

24-26 September 2013

Fingerprint of the PUC

• PUC is a subsurface

current (60-200 m)

° **S, average of 2004**

Physical advection of nutrient-rich and oxygen-poor water

Meridionalcurrent data time-series

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 2004 2005

Strong seasonality of the PUC: high in summer

Air-sea oxygen flux

[mol/m2/d]

+ flux towards ocean

- Offshore: seasonal differences driven by SST variation
- Shelf: upwelling of cold water with low oxygen

- flux towards atmosphere

Shelf: upwelling of cold water with low oxygen

Offshore transport of low-oxygen water

Offshore advection of hypoxic water in mesoscale filaments below the thermocline

The biological oxygen budget in the watercolumn

Biological oxygen consumption most intense below euphotic zone

Oxygen bottom flux into the sediment

- **1. High oxygen fluxin shallow areas:**
	- oxygen flux into the sediment consumed by sulfur bacteria, i.e. no diffusion of oxygen into the sediment!
- **2. Lower oxygen fluxat intermediate depths:**
	- due to hypoxic or anoxic bottom water
- **3. High oxygen fluxat theshelfedge:**
	- no mats of sulfur bacteria and oxygen can penetrate into the sediment, supporting aerobic mineralisation of sediment detritus

Spatial pattern of oxygen flux into the sediment

Our model of moderate complexity is able to simulate the oxygen conditions and its variability on the Namibian shelf.

Thank you verymuch foryourattention !

The Benguela ecosystem model

Modeled processesat the(sediment) redoxcline

- Chemolithoautotrophic oxidation of H₂S or S⁰ with O₂ or NO₃⁻
- NO_3^- reduced to

 $- N_2$ (denitrification)

or

- $-$ NH₄⁺ (DNRA)
- NH_4^+ is biologically available, while N₂ is yy from the system !

DNRA-dissimilatory nitrate reduction to ammonium

Coupled sulfur-and nitrogen cycle

Coupled sediment model

- Redoxcline within the sediment
- low H_2S –availability
- Mats of sulfur bacteria DO NOT develop

'thin' sediments 'thick' sediments

- Redoxcline at the sediment surface or within the water column
- high H_2 S-availability
- Mats of sulfur bacteria develop

