BCC Annual Science Forum

Influence of atmospheric circulation and large-scale climate patterns on the Namibian upwelling system: analysis of atmosphere-ocean simulations

Nele Tim, Eduardo Zorita

Centre for Materials and Coastal Research

Motivation - Focus of interests

- \rightarrow Long-term trends of the Namibian upwelling
- \rightarrow Influence of large-scale atmospheric pattern

\rightarrow Climate modes:

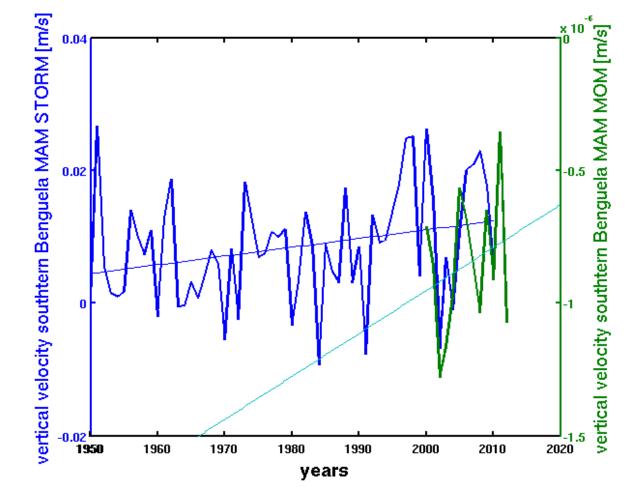
- \rightarrow Antarctic Oscillation (AAO)
- \rightarrow Tropical Atlantic variability
- \rightarrow Pacific ENSO
- \rightarrow Atlantic Meridional Mode (AMM)
- \rightarrow Quasi-Biennial Oscillation (QBO)
- \rightarrow St. Helena Index (HIX)
- \rightarrow Regional land-sea contrast of temperature and sea level pressure (SLP)
- \rightarrow Decadal variability of the Namibian upwelling
- \rightarrow Relationship with external forcings (GHG and solar variability)
- \rightarrow Analysis of Mode Waters and of the Oxygen Minimum Zone (OMZ)

Genus = Geochemistry and Ecology of the Namibian Upwelling System

- Project:Analyses of the relationships between climate change,
biogeochemical cycles and ecosystem structure in the large
marine ecosystem off the Namibian coast
- Subproject 1: relationship between the large-scale, low-frequency climate forcing and local processes that drive upwelling intensity in this region

Statistical analyses of the causes for the long-term variations at decadal and longer time scales of upwelling off the Namibian coast

Data


- → HadISST1 gridded observation data; 1870 – 2012; 1°
- → STORM simulation of the global ocean model MPI-OM; 1950 – 2010; 0.1°
- → MOM4 regional simulation of the ecosystem model Modular Ocean Model 4.0; 07/1999 – 05/2012; 0.1°; 6.63N – 34S, 10W – 18E
- \rightarrow Reanalysis Data:
 - \rightarrow NCEP; 1948 2011;
 - 2.5°
 - \rightarrow ERA Interim; 1979 2010;

0.7°

Long-term trends of Namibian upwelling

- → vertical velocities of STORM and MOM4
- → upwelling region separate in Northern - and Southern Benguela, border at 28°S
- → negative trend in the north (except for DJF of STORM),
 positive trend in the south (except SON)
- → trends in upwelling in
 Southern Benguela
 significant: MAM (+),
 SON (-), DJF (+)

Correlations with atmospheric variables

- → first EOF of SST of HadlSST1, STORM, 10m-Temperatur of MOM4
- \rightarrow vertical velocities of MOM4 and STORM
 - \rightarrow strong anticyclone
 - \rightarrow strong southerly winds
 - \rightarrow strong southerly wind stress
 - \rightarrow air temperature contrast between land (positive) and ocean (negative)
 - → SSTs of HadISST1 and STORM present well the connection between upwelling and atmosphere. MOM4 provide mainly distinct results
 - \rightarrow Northern Benguela:
 - \rightarrow STORM: expected pattern, except JJA (wind and air temperature)
 - → MOM4: strongest correlations in SON and DJF; JJA only positively correlated with wind and SLP over northern Benguela
 - \rightarrow Southern Benguela:
 - → STORM, MOM4: no clear pattern: SLP positively correlated over southern South Atlantic, no southerly winds

Correlations with climate indices

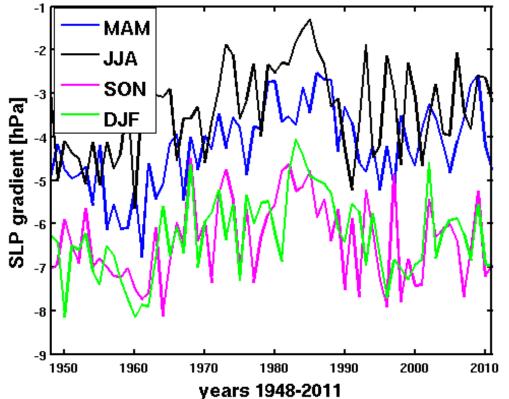
Upwelling Index (SST)

- → ENSO has significant influence in SON and DJF
- → The tropical Atlantic seems to have a stronger influence than the Antarctic Ocean
- → MOM4 upwelling is not influenced by ENSO

Upwelling Index (vertical velocity)

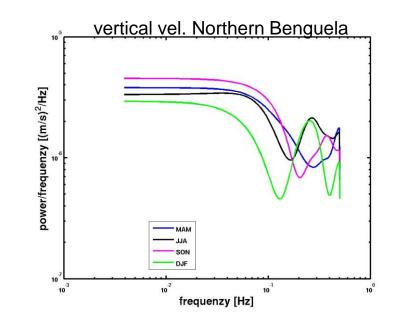
- \rightarrow ENSO influences in DJF
- → Impact of the Antarctic Ocean stronger the of the tropical Atlantic
- → MOM4 and STORM do not agree on the regional differences
- \rightarrow QBO and AMM: no significant influence

Upwelling index derived from the 13°C isotherm Gentre for Materials and Coastal Research

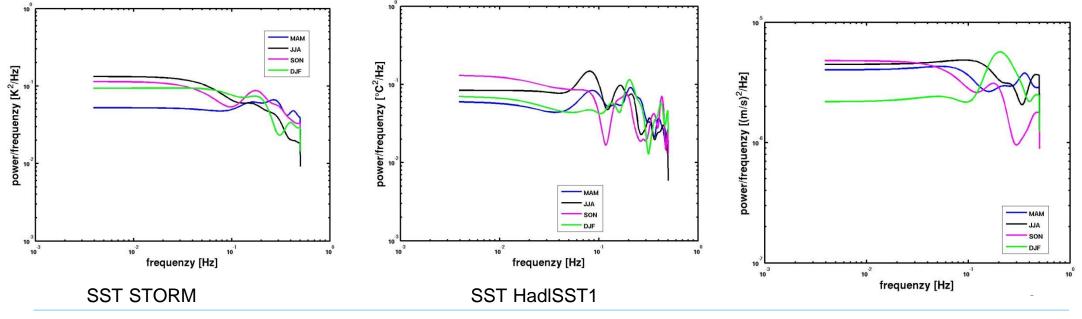

Helmholtz-Zentrum

- \rightarrow Hagen defined an upwelling index derived from the 13°C isotherm of satellite data (AVHRR)
- → Region between the 13°C isotherm and the coast is defined as the Intense Benguela Upwelling (IBU)
- \rightarrow SST of STORM
 - \rightarrow warm bias removed
- \rightarrow unbiased SST of STORM agrees quite well with the IBU of AVHRR
 - \rightarrow IBUs are larger in JJA and SON than in MAM and DJF

Land-sea contrast: SLP gradient


Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

- \rightarrow test Bakuns hypothesis
- \rightarrow SLP differences between land and ocean
- → NCEP: significant positive trend in MAM and JJA
- → correlations with upwelling index of vertical velocities:
 - → Northern Benguela: in MAM and DJF
 - \rightarrow Southern Benguela: MAM



Decadal variabilities – spectral analysis

- \rightarrow Northern Benguela:
 - \rightarrow JJA, DJF 4 years; SON 2.5 years
- \rightarrow Southern Benguela:
 - → DJF: peaks strongly at 5 years; SON weaker; MAM: 2.5 years
- \rightarrow STORM:
 - \rightarrow SON, DJF: 5 years; MAM: 3.5 years
- \rightarrow HadISST1:
 - → DJF, SON: 5 years; JJA: 12.5 and 10 years; MAM: 12.5 and 5 years

vertical vel. Southern Benguela

Geesthacht Centre for Materials and Coastal Research

- \rightarrow SST, vertical velocity and 13°C isotherm provide good indices for upwelling
- → negative trends in upwelling in Northern Benguela, positive trends in upwelling in Southern Benguela
- \rightarrow ENSO influences upwelling significantly in DJF
- \rightarrow long-term evolution of the land-sea SLP gradient does not agree with Bakun hypothesis
- → Spectral analysis show periods of 5 years, 2.5 years and decadal variability of 10 and 12.5 years
- \rightarrow External forcing, Mode Waters, OMZ: not yet analysed

Thank you