

Is Zooplankton able to stabilize the oxygen content of oceanic oxygen minimum zones?

Martin Schmidt, Anja Eggert

Leibniz-Institute for Baltic Sea Research Rostock-Warnemünde, Germany Contributions from Tim Junker, Volker Mohrholz

M. Schmidt (10

Angola

Namibia

Walvis Bay

Luederit

18.0°E

Namibe

220

POO

180

160

196

80

DEPTH (m) : 50 to 150 TIME : 05-JAN-2005 12:00

LATITUDE

24°

28%

8.0%

10.0°E

12 OF

LONGITUDE

average oxygen concentration (mmol/m³)

14.0°E

Convergence of SACW and ESACW in the Northern Benguela

SACW : high nutrients, low oxygen

ESACW : low nutrients, high oxygen

Northern Benguela

Long term evolution

SEA RESEAR

Long lasting oxygen depletion.

Never anoxic.

Accidental balance between consumption and ventilation?

"Regulation" from feedbacks within the ecosystem?

Investigation method

- > simulation, coupled biochemical model
- comparison with field data
- > oxygen concentration
- > zooplankton abundance

> physiological data

- > oxygen tolerance
- respiration rates

The circulation model

Circulation model → MOM **Atmospheric drivers** → QuikSCAT/ASCAT **NCEP Open boundaries** → ECCO, WOA Resolution → 7km .. 15 km → 2m .. 300m

Atmospere circulation (Hagen et al. 2005) SAA : South Atlantic Anticyclon KC : Kalahari Cyclon AC : Angola Cyclon

Ecosystem model \rightarrow ERGOM (modified for specifics of the South-Eastern Atlantic)

The ecosystem model

Zooplankton representation:

- Grazing (preferences, food, T, O₂)
- Respiration (grazing, movement, T, O₂)
- Mortality (food, O₂)

The ecosystem model

Zooplankton representation: vertical migration Does zooplankton know a "map" of the ocean? Assume only "local rules"!

Results: zooplankton distribution

EIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

> No migration Grow, where the food is

Biomodal distribution from diel migration

Avoid light Stay near optimum temperature Avoid hypoxia Follow food gradients

Oxygen consumption

IC SEA RESEARC

Oxygen consumption

SEA RESEARC

JFM

AMJJASOND

Bergen, June 2014

Results: AOUR

Karstensen et al., 2008

EIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

Time scales

1. physical time scales		
Residence time = Surface flux		
Angola gyre Northern Benguela	: > 30 y (Tomczak, 1996) : 150 d (Eggert (next), Mohrholz et al. (2008)	

2. biological time scales:

Respiratory time	Oxygen concentration = AOUR	
Angola gyre Northern Benguela	: 1 10 y(Kartstensen et al. (2008) : 1 10 y	

Discussion

Is the implemented food web significant?

Is the resulting biomass realistic?

Is the implemented behaviour realistic?

Is the assigned respiratory power of the various functional groups realistic?

Conclusions

In the **Benguela** system ventilation by the PUC (physics) dominates. Organismic oxygen consumption modifies the oxygen status only. (Exception: Sulphidic events from low physical fluxes.)

In the Angola Gyre physical time scales are largerer than respiratory oxygen consumption time scales.

In the model, results organisms responding to oxygen conditions reveal as the main players.

Reduced zooplankton metabolic activity at low oxygen conditions and avoidance of the oxygen minimum zone stabilize the oxygen content there.

Zooplankton respiration thresholds and oxygen tolereance define a lower limit for the oxygen content in the Angola gyre.

Conclusions

Zooplankton breakdown from extending OMZ????

Transition from extending OMZ → **deepening OMZ**?

Zooplankton biomass

Martin et al. (2014)

LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

Model mesozooplankton

LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH WARNEMÜNDE

Zooplankton biomass

Eggert in Martin et al. (2014)

Bergen, June 2014

Zooplankton biomass

LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

Oxygen related Processes Consumption in the water column

Typical oxygen budget [µmol/kg/y], 23°S July 2004

Primary production, respiration, mineralisation, nitrification