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Abstract

An analytical model for wind driven upwelling and the resulting ecosystem re-

sponse is derived in this thesis. Beginning with the linearised Boussinesq equations,

the response of the ocean to windforcing is analysed. Especially wind fields with a

rotational wind stress are of interest due to their strong upwelling. The resulting

hydrodynamic equations, describing the upwelling, are used as an input to an ana-

lytical ecosystem model within a circular, rotational wind field.

The model ecosystem is located in the open ocean exchanging tracers with the sur-

rounding water by advection. Detritus, nutrients and oxygen are considered in the

model including advection, mineralisation of detritus and (in some cases) diffusion.

These model components are sufficient to describe the formation of an oxygen min-

imum zone and the nutrient enrichment within an upwelling area.

The analytic procedure of solution allows a consistent description of the processes

within an upwelling area. The connection of physical properties like the wind stress

and the depth of the water are directly linked to tracer equations of the ecosys-

tem model. The effect of different assumptions about the boundary conditions and

fluxes are discussed.

Zusammenfassung

Ein analytisches Modell von windgetriebenem Upwelling und der Reaktion des

Ökosystemes wird in dieser Arbeit hergeleitet. Beginnend mit den linearisierten

Boussinesqgleichungen wird die Reaktion des Ozeans auf Windantriebe beschrie-

ben. Besondere Aufmerksamkeit erfahren dabei Windantriebe mit Rotationsanteil,

da diese starkes Upwelling verursachen. Die resultierenden hydrodynamischen Glei-

chungen, welche die Strömungen unter Windantrieb beschreiben, sind die Basis der

Advektionsterme in einem einfachen Ökosystemmodell.

Das Ökosystem befinde sich im Ozean und tauscht über die berechneten Strömungen

Tracerkonzentrationen mit seiner Umgebung aus. Das einfache Modell verfolgt die

Tracer Sauerstoff, Nährstoffe und Detritus und beinhaltet Advektion, Detritusmi-

neralisierung und (teilweise) Diffusionsterme. Diese Modellkomponenten sind hinrei-

chend, um die Entstehung einer Sauerstoffminimumzone und der Nährstoffanreicherung

in einem Upwellinggebiet zu beschreiben.

Die analytische Herangehensweise erlaubt eine konsistente Beschreibung der statt-

findenden Prozesse. Der Zusammenhang von physikalischen Parametern wie der

Windstärke oder der Absinkgeschwindigkeit des Detritus wird in direkten Zusam-

menhang mit den Tracerkonzentrationen gebracht. Der Effekt verschiedener Rand-

bedingungen auf das System wird untersucht und diskutiert.
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1 Introduction

The global ocean circulation is transporting water masses over the distance of thousands

of kilometers. When this water is advected into the euphotic zone of the ocean, it can

play out its effect on the ecosystem. The deep water is often rich in nutrients and oxygen,

a mixing into the surface layer can lead to a high ecosystem activity (e.g. O’Brien 1975).

According to the formula for Ekman pumping

w(−Hmix) = −curlz

(
τ

fρ0

)
, (1)

wind with a rotational structure has the potential to cause large scale upwelling (e.g.

Olbers, Willebrand, and Eden 2012,p. 449). It is deemed to be responsible for some of

the upwelling near the eastern coasts of the Atlantic ocean (e.g. M. Schmidt et al. 2000).

Because of the low vertical velocities, the in-depth structure of the vertical velocity profiles

is hard to measure (e.g. Kadko and Johns 2011). An analytical model for wind driven

upwelling areas based on the linearised Boussinesq equations is developed in this thesis

and employed for different wind structures.

The upwelling velocities are usually low in comparison to the horizontal velocities, but

due to the strong vertical tracer gradients this process is of great importance for the

ecosystem.

With simple analytical model components, the development of an oxygen minimum zone

and the nutrient enrichment within an upwelling area are explained and analyzed.

The analytical theory does not allow a description of all effects in detail and the discussed

equations may seem very simplified sometimes. It can not be the purpose of an analytical

model to compete with numerical models in terms of the number of considered processes or

the accuracy of reproduction of measurement profiles. The equations have to be simplified

enough, to allow an analytical treatment.

The beauty of the analytical method however, is the direct visibility of the influence of

different parameters on the result. In the end, a consistent description of the effect of

upwelling in the hydrodynamic model on the ecosystem model is given. The influence of

changed parameters in the wind field or different boundary conditions are directly derived

from the descriptive equations, without the detour of employing a numerical model.

Based on the results of the hydrodynamical model equations, the advective exchange of

the upwelling area with the surrounding ocean is considered. An analytical ecosystem

model for polar symmetric wind forcings is derived.
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2 A Physical Model of Wind Driven Upwelling

Compared to the lateral velocities, the vertical (up- and downwelling) velocities are usually

two or three orders of magnitude smaller (Vélez-Belch́ı and Tintoŕı 2001). Still they are of

great importance for the transport of state variables of the water. Vertical concentration

gradients are much stronger than horizontal gradients in the water, already small upwelling

velocities can change the attributes of the water in an important way.

In the range of wind-driven upwelling in the open ocean, there are two important processes

that can cause upwelling. The first one is a time-dependent divergent wind stress at the

surface, the second one is a rotational wind stress (1). For the ecosystem model, we are

mainly interested in long term (or even steady state) upwelling effects caused by rotational

wind forcings.

2.1 Table of Variables and Abbreviations for the Hydrodynamic

Model

In order to keep the terms in the following derivations short and readable, a set of abbre-

viations is used. A table of variables and abbreviations is given here.

symbol meaning

z depth coordinate (z=0 at the surface, upwards positive)

ρ radial polar coordinate

ϕ angular polar coordinate

u, v zonal/meridional velocity

w vertical velocity (upwards positive)

H depth of the ocean (H is positive)

Hmix depth of the mixed layer (positive)

p pressure

% density

f Coriolis parameter

η surface elevation

g gravity of earth constant

b buoyancy

(X, Y ), (R,Φ) wind induced volume force in Cartesian/polar coordinates

N Brunt-Väisälä frequency

n mode index

~τ wind stress vector
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2.2 Basic Equations and Approximations

As mentioned in the introduction, analytical modelling requires usually more simplified

systems than numerical modelling. An analytical solution to the complete Navier-Stokes

equations has yet to be found. Luckily, many effects are too small to cause a noticeable

effect or can be omitted under certain conditions. Some of the approximations limit the

applicability of the model in terms of the bottom topography, the lateral extend of the

wind stress considered or the temporal variability of the processes.

The basic equations for the derivations in this chapter are the linearised Boussinesq-

equations as written in (5). In this work, the Coriolis force is approximated by the

f -plane approximation. Further approximations are the incompressibility of the water,

and the Boussinesq approximation itself. At the time t = 0, an ocean at rest is assumed,

without any currents or pressure perturbations existent.

2.3 The Boussinesq Equations

A starting point for the derivations are the linearized Boussinesq equations, as found in

Fennel and Lass 1989.
∂u

∂t
− fv +

∂p

∂x
= X

∂v

∂t
+ fu+

∂p

∂y
= Y

∂p

∂z
− b = 0

(2)

Additionally we use the continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3)

and
∂b

∂t
+N2w = 0. (4)

If there is no risk of confusing the indices with derivatives, the derivatives are written in
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a short notation by:

ut − fv + px = X

vt + fu+ py = Y

−b+ pz = 0

bt +N2w = 0

ux + vy + wz = 0

(5)

2.4 Initial Conditions

In the hydrodynamic model equations, a couple of initial conditions are used. At the time

t=0, the ocean is at rest and there are no pressure perturbations, thus

u(t0) = 0, v(t0) = 0, p(t0) = 0. (6)

For later use, we require that the effects far away from the wind field vanish.

p(x∞) = 0, p(y∞) = 0

u(x∞) = 0, v(y∞) = 0

ux(x∞) = 0, vy(y∞) = 0

(7)

With this assumptions, it is easy to derive the following conditions in the ocean only with

the help of the momentum equation and the continuity equation.

pt(t0) = 0, ut(t0) = X(t0), vt(t0) = Y (t0)

uy(t0) = 0, vx(t0) = 0

ptt(t0) = −λ−2(uxt(t0) + vyt(t0)) = −λ−2 [Xx(t0) + Yy(t0)]

px(x∞) = 0, py(y∞) = 0

(8)

2.5 Decoupling the Boussinesq Equations in Cylindrical Geom-

etry using Fourier Transformation

The starting point are the Boussinesq equations in cylindrical coordinates. Using Fourier

transformations, we can get a single decoupled differential equation of the pressure p.

Once the solution for the pressure equations is found, the velocities w, uρ, uϕ can be

derived with the help of the Boussinesq equations. Starting with equation set (5), the
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buoyancy can be eliminated and for a constant Brunt-Väisälä frequency, the equations in

cylindrical coordinates are

uρt − fuϕ + pρ = R

uϕt + fuρ +
1

ρ
pϕ = Φ

1

ρ

∂

∂ρ
ρuρ +

1

ρ
uϕϕ + wz = 0

ptz = −N2w.

(9)

In equation set (9), the new variables uρ and R are the radial velocity and the radial

(outwards/inwards directed) part of the wind forcing. The variables uϕ and Φ are the

angular velocity and the angular part of the windforcing. For the wind fields the conversion

formulas
R = Y sin (ϕ) +X cos (ϕ)

Φ = Y cos (ϕ)−X sin (ϕ)
(10)

can be used to transform between Cartesian and cylindrical coordinates.

Multiplication of the first two equations of (9) with f and subtraction of the time derivative

of the other equation respectively decouples the equations of uρ and uϕ. After Fourier

transformation, the equations can be solved for one of the variables. Throughout this

whole work, the definition for the Fourier transformations∫ ∞
−∞

dt dϕ eiωt−ikϕF (ϕ, t) = F (ω, k)∫ ∞
−∞

dω

2π

dk

2π
e−iωt+ikϕF (k, ω) = F (ϕ, t)

(11)

is used. For the velocity components, we get

uϕ =
1

f 2 − ω2

([
iω

ρ
im+ f

∂

∂ρ

]
p− iωΦ− fR

)
ur =

1

f 2 − ω2

([
iω

∂

∂ρ
− imf

ρ

]
p− iωR + fΦ

)
.

(12)

The lateral currents can either be caused by the volume forces directly or they can be

driven by the pressure gradient.

With the assumption of a flat ocean ground, the z-dependence can be separated in equa-

tion set (9). We assume solutions in the form
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uϕ(r, ϕ, z, t) =uϕ(r, ϕ, t)F (z)

ur(r, ϕ, z, t) =ur(r, ϕ, t)F (z)

p(r, ϕ, z, t) =p(r, ϕ, t)F (z).

(13)

Taking this ansatz into (9) and assuming a constant Brunt-Väisälä frequency, a differential

equation for F(z) can be found

d2

dz2

1

N2
F (z) + λ2F (z) = 0. (14)

Equation (14) combined with boundary conditions at the sea bottom and the surface

N2 dF

dz
+
F

g
=0 at z = 0,

dF

dz
=0 at z = −H,

(15)

forms and eigenvalue problem (see also Fennel and Lass 1989). A complete set of orthog-

onal eigenfunctions is the solution to the problem, so the variables are expanded in terms

of vertical eigenfunctions Fn(z)

(uϕ, ur, p) =
∞∑
n=0

(uϕn, u
r
n, pn)Fn(z). (16)

Substituting (16) into (9), the result for the vertical velocity is

w = −
∞∑
n=0

N−2(z)
dFn(z)

dz
rpn(ρ, ϕ, t). (17)

For a constant Brunt-Väisälä frequency, the eigenvalues are λ2
0 = (gH)−1 for the barotropic

eigenvalue, and λn = nπ
NH

for the baroclinic eigenvalues.

2.6 Solving the Differential Equation for the Pressure

Now it is time to solve the pressure equation. The task of decoupling the equation set (5)

in Fourier space has already been done in Fennel and Lass 1989 for Cartesian coordinates,
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so we just use the result

− λ2
npn(ω) +

(k2 + κ2)

(ω2 − f 2)
pn =

−1

(ω2 − f 2)

[(
ik +

κf

ω

)
Xn +

(
iκ− fk

ω

)
Yn

]
(18)

and transform it into cylindrical coordinates. Recalling the expressions for the divergence,

the Laplace operator and the rotation in cylindrical coordinates (19), the pressure equation

(18) is transformed using the same notation for the velocities and the wind forcing as

introduced in (9).

The operators in cylindrical coordinates (e.g. Bronstein et al. 2008) are

curlz(X, Y ) =

(
1

ρ
∂ρρ(X, Y )ϕ −

1

ρ
∂ϕ(X, Y )ρ

)
~ez

div(X, Y ) =
1

ρ
∂ρρ(X, Y )ρ +

1

ρ
∂ϕ(X, Y )ϕ + ∂z(X, Y )

4hp =
1

ρ
∂ρ (ρ∂ρp) +

1

ρ2
∂2
ϕp

(19)

The transformed pressure equation becomes:(
−λ2

n

(
f 2 − ω2

)
+

1

ρ
∂ρρ∂ρ +

1

ρ2
∂2
ϕ

)
(−iωpn(ρ, ϕ, ω))

= −iω1

ρ
(∂ρρRn(ρ, ϕ, ω) + ∂ϕΦn(ρ, ϕ, ω)) +

f

ρ
(∂ρρΦn(ρ, ϕ, ω)− ∂ϕRn(ρ, ϕ, ω))

(20)

Now we have one single differential equation for the pressure perturbation p and three

equations for uρ, uϕ and w in dependence of p. Thus by solving the differential equation

for p it is also possible to derive the equations for the currents.

Analogous to the depth coordinate before, a separation ansatz is chosen for the angular

dependence.

pn(ρ, ϕ, ω) =
∑
k

p̃n,k(ρ, ω)eikϕ

Rn(ρ, ϕ, ω) =
∑
k

R̃n,k(ρ, ω)eikϕ

Φn(ρ, ϕ, ω) =
∑
k

Φ̃n,k(ρ, ω)eikϕ

(21)

Now the angular derivation becomes simply a product by the natural numbers k. The k’s

have to be element of the integer numbers due to the physical reason, that the pressure
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perturbation field is 2π periodic.

∑
k

(
−λ2

n

(
f2 − ω2

)
+

1

ρ
∂ρρ∂ρ −

k2

ρ2

)(
−iωp̃n,k(ω, ρ)eikϕ

)
=
∑
k

− iω 1

ρ

(
∂ρρR̃n,k(ρ, ω)eikϕ + ∂ϕΦ̃n,k(ρ, ω)eikϕ

)
+
f

ρ

(
∂ρρΦ̃n,k(ρ, ω)eikϕ − ∂ϕR̃n,k(ρ, ω)eikϕ

)
(22)

Now it is quite easy to perform the Fourier transformation of the angular variable too.
Multiplication by e−imϕ and integration

∫
dϕ results in a product by

∫
einϕ−imϕdϕ = δnm:

∑
k

∫ ∞
−∞

(
−λ2n

(
f2 − ω2

)
+

1

ρ
∂ρρ∂ρ −

k2

ρ2

)(
−iωp̃n,k(ω, ρ)eikϕ−imϕ

)
dϕ

=
∑
k

∫ ∞
−∞

[
− iω
ρ

(∂ρρRn,k(ρ, ω) + ikΦn,k(ρ, ω)) eikϕ−imϕ +
f

ρ
(∂ρρΦn,k(ρ, ω)− ikRn,k(ρ, ω)) eikϕ−imϕ

]
dϕ

(23)

Evaluating the Fourier transformation of the angular derivatives and applying the δ-

function, the resulting equation is(
−λ2

n

(
f 2 − ω2

)
+

1

ρ
∂ρρ∂ρ −

m2

ρ2

)
(−iωp̃n,m(ω, ρ))

=− iω

ρ
(∂ρρRn,m(ρ,m, ω)− imΦn,m(ρ, ω)) +

f

ρ
(∂ρρΦn,m(ρ, ω) + imRn,m(ρ, ω)) .

(24)

This is the Helmholtz differential equation. A substitution of ρ leads (depending on

the sign) either to the ordinary Bessel differential equation or to the modified Bessel

differential equation.

ordinary Bessel diff. equation modified Bessel diff. equation

r = λn
√
ω2 − f 2ρ→ ρ = r

λn
√
ω2−f2

r = λn
√
f 2 − ω2ρ→ ρ = r

λ
√
f2−ω2

for the case ω � f for the case ω � f

We will keep in mind, that also the r depends on the vertical modes, but drop the index

n for better readability. The case differentiation shown in the table is of importance for

the solutions considered later on. The comparison of ω with the Coriolis frequency f is

going to determine the sign in the Bessel differential equation (28). The ordinary Bessel

differential equation is describing processes, which are fast in comparison to the Coriolis

frequency, the modified Bessel differential equation is describing slower processes.

Dropping the explicit notation of the dependencies for now (Rn = Rn(ρ,m, ω), Φn =

Φn(ρ,m, ω)) the equation can be written in a shorter way. With the substitution that

leads to the normal Bessel differential equation:

8



(
λ2n(ω2 − f2)

∂2

∂r2
+ λ2n(ω2 − f2)

1

r

∂

∂r
+

(
−λ2n(f2 − ω2)− λ2n(ω2 − f2)

m2

r2

))
(−iωp̃n,m(ω, ρ))

=
1

2π

λn
√
ω2 − f2
r

[−iω (∂rrRn,m − imΦn,m) + f (∂rrΦn,m + imRn,m)]

(25)

(
∂2

∂r2
+

1

r

∂

∂r
+

(
+1− m2

r2

))
(p̃n,m(ω, ρ))

=− 1

2πiω

1

rλn
√
ω2 − f 2

[−iω (∂rrRn,m − imΦn,m) + f (∂rrΦn,m + imRn,m)]︸ ︷︷ ︸
Fn,m(r,ω,m)/r (Inhomogeneity ordinary Bessel function)

(26)

And with the second substitution which leads to the modified Bessel differential equation(
∂2

∂r2
+

1

r

∂

∂r
+

(
−1− m2

r2

))
(p̃n,m(ω, ρ))

= − 1

2πiω

1

rλn
√
f 2 − ω2

[−iω (∂rrRn,m − imΦn,m) + f (∂rrΦn,m + imRn,m)]︸ ︷︷ ︸
Fn,m(r,ω,m)/r (Inhomogeneity modified Bessel function )

. (27)

2.6.1 Derivation of the Greens Function

With the abbreviation for the inhomogeneity indicated above and by omitting the indexes

m and n for now, the differential equation becomes:

r′
(
∂2

∂r′2
+

1

r′
∂

∂r′
+

(
±1− m2

r′2

))
p(r′) = F (r′) (28)

The plus and the minus sign are determining the ordinary/modified Bessel differential

equation respectively. A formal solution for (28) can be derived with the method of the

Green’s function. The defining equation for the Green’s function is

r′
∂2

∂r′2
G(r, r′) +

∂

∂r′
G(r, r′) + r′

(
±1− m2

r′2

)
G(r, r′) = δ(r − r′). (29)

A multiplication of (28) from the left side with r′G(r, r′) delivers (30). Multiplication of

(30) with p(r′, ϕ) becomes (31).

G(r, r′)r′
∂2

∂r′2
p(r′, ϕ′) +G(r, r′)

∂

∂r′
p(r′) +G(r, r′)r′

(
±1− m2

r′2

)
p(r′, ϕ′) = G(r, r′)r′F (r′, ϕ)

(30)

9



p(r′, ϕ′)r′
∂2

∂r′2
G(r, r′) + p(r′, ϕ)

∂

∂r′
G(r, r′) + p(r′, ϕ)r′

(
±1− m2

r′2

)
G(r, r′) = δ(r − r′)p(r′, ϕ)

(31)

Integrating over
∞∫
0

f(r, r′)dr′ and then subtracting both equations from each other gives

p(r, ϕ) =

∞∫
0

r′G(r, r′)F (r′, ϕ)dr′ +

∞∫
0

(
r′p(r′)

∂2

∂r′2
G(r, r′)− r′G(r, r′)

∂2

∂r′2
p(r′)

)
dr′

+

∞∫
0

(
p(r′)

∂

∂r′
G(r, r′)−G(r, r′)

∂

∂r′
p(r′)

)
dr′

(32)

To avoid lengthyness, a shorter notation for the convolution is introduced

G ? X =

∞∫
0

G(r, r′)F (r′, ϕ)dr′ and G ? r′X =

∞∫
0

r′G(r, r′)F (r′, ϕ)dr′. (33)

By integrating the first term with the r′ derivatives partially, we gain

p(r) =G ? r′F +

∞∫
0

(
r′p(r′)

∂2

∂r′2
G(r, r′)− r′G(r, r′)

∂2

∂r′2
p(r′)

)
dr′

+

∞∫
0

(
p(r′)

∂

∂r′
G(r, r′)−G(r, r′)

∂

∂r′
p(r′)

)
dr′

=G ? r′F +

[
r′p(r′)

∂

∂r′
G(r, r′)

]∞
0

−
[
r′G(r, r′)

∂

∂r′
p(r′)

]∞
0

.

(34)

Now it is easy to see the necessary boundary conditions for the Greens function

� for r′ → 0, the p(r′) ,G(r, r′), ∂
∂r′
p(r′) and ∂

∂r′
G(r, r′) may not diverge faster than

1/r.

� for r′ → ∞, the p(r′) ∂
∂r′
G(r, r′) and G(r, r′) ∂

∂r′
p(r′) have to approach zero faster

then linearly.

The boundary conditions of the Greens function for the ordinary- and the modified Bessel

differential equations are the same.

Returning to equation (31), but this time not multiplied by pr′ but by r′2, the result is

the Bessel differential equation in its ordinary form.

10



(
r′2

∂2

∂r′2
G(r, r′) + r′

∂

∂r′
G(r, r′) +G(r, r′)

(
±r′2 −m2

))
= r′δ(r − r′). (35)

The solutions of the homogeneous Bessel differential equation are the Bessel functions

Jm, Ym and the Hankel functions H(1), H(2) for the positive sign. For the negative sign,

thus for the modified Bessel differential equation, the solutions are the Bessel functions

Im, Km (Abramowitz and Stegun 1972).

For the Greens function, the ansatz G(r, r′) = θ(r− r′)g>(r, r′) + θ(r′− r)g<(r, r′) is used

in equation (35). Using the boundary conditions derived above, we arrive finally at the

complete Greens function for the ordinary Bessel differential equation

G(r, r′) =
π

2
(θ(r − r′)Jm(r′)Ym(r) + θ(r′ − r)Ym(r′)Jm(r)) (36)

and the modified Bessel differential equation respectively

G(r, r′) = θ(r − r′)Im(r′)Km(r) + θ(r′ − r)Km(r′)Im(r) (37)

The Greens function already shows the basic features of the solution for specific wind fields

(section 2.7).The Greens function is consistent of two parts. The first one is describing

the behaviour in the inner, wind influenced area (θ(r0− r)). The second one is describing

the behaviour outside of it (θ(r − r0)). Inside of the wind influenced area, components

of the pressure perturbation are proportional to the class of Bessel functions Im, that are

growing exponentially with the distance. Outside, the class of functions Km takes over.

It decreases exponentially.

2.7 Application of the Theory to Different Wind Fields

In the previous chapter, a formal solution to the differential equation describing the wind

driven pressure perturbation was derived. This formal solution is not easy to analyze yet,

and the specific solutions for different wind fields are not obvious. There is some more

work to be done in order to get a realistic picture of currents, that are driven by different

wind fields.

2.7.1 Wind Fields of Interest

Recall, that the aim of this work is to model a simple ecosystem within an upwelling area.

The formal solution of the Boussinesq equations has been derived in polar coordinates to

11



(i) (ii) (iii)

Figure 1: Three different wind fields. The picture shows a scheme of the distribution of
the wind stress on the water. The respective formulas describing this fields and
the currents they cause can be found in the subsections 2.7.2, 2.7.3 and 2.7.4.

allow an easy description of wind fields with a rotational structure. Upwelling currents

establish in steady state under rotational wind forcings on wind edges.

To archive a base for the advection in the ecosystem model to come, the formal solution

is employed on different wind fields giving an impression of the resulting currents under

the influence of rotational wind stress. The focus in this work are processes with a time

scale much longer than the inertial oscillations (ω � f), thus the formal solution for the

modified Bessel differential equation is employed.

Three exemplaric wind fields (see also fig. 1) are chosen for this task, they are causing

interesting vertical velocity profiles and are easy enough in their mathematical structure

to allow an analytic inverse Fourier transformation.

2.7.2 Circular Wind Patch

The first wind field to apply the formal solution to is a round wind patch with a homo-

geneous linear wind inside (see fig. 1i). This wind field has a divergence at the front and

the back side. At the wind edges on the right and the left side, it causes a rotational wind

stress. The curl is mathematically positive at the left hand side and negative at the right

hand side. The wind edges are realized with the help of the Theta-function, causing the

wind to decrease in a sharp wind edge at the radius ρ0.

Φ(ϕ, z, t) =
u2
∗

Hmix

θ (z +Hmix) θ (ρ0 − ρ) θ(t) cos(ϕ)

R(ϕ, z, t) =
u2
∗

Hmix

θ (z +Hmix) θ (ρ0 − ρ) θ(t) sin(ϕ)

(38)

The parameter u2
∗ is defined as u2

∗ = τ
ρ0

= ρa
ρ0
c10W

(x,y)
10 W10 (Fennel and Lass 1989, p22).

12



c10 is the drag coefficient in the order of 10−3, W10 is the wind velocity ten meters over

the sea surface. ρa and ρo is the density of the air and seawater respectively. So for a

wind velocity of 10m
s

, u∗ is round about 0.01m
s

.

The Fourier transformation according to (11) and (21) in the angular coordinate ϕ, the

time t and the separation into vertical modes gives:

Φn,m(m,ω) =
u2
∗
hn
θ (r0 − r′)

i

ω + iε
π (δm,−1 + δm,1)

Rn,m(m,ω) =
u2
∗
hn
θ (r0 − r′)

i

ω + iε

π

i
(δm,−1 − δm,1)

(39)

To get the pressure perturbation, the formal solution is applied to the transformed wind
field and the integrals and the sum has to be computed. The whole calculation is to be
found in the annex.

pn(r, ϕ, t) =

∫ ∞
−∞

∫ ∞
0

∞∑
m=−∞

r′Gm(r, r′)F (r′, ϕ, ω)eimϕ−iωtdr′dω

= θ(t)
u2∗
hn
ρ0 [θ(ρ− ρ0)I1(λnfρ0)K1(λnfρ) + θ(ρ0 − ρ)K1(λnfρ0)I1(λnfρ)]

[
sin(ϕ)− tf cos(ϕ)

]
(40)

Not surprisingly, the solution for pn shows different features inside of the wind influenced

area θ(ρ0 − ρ) and outside of it. One of the terms is constant in time and one is linearly

growing. The constant term can be located at the parts with the strongest wind diver-

gence. The linearly growing pressure perturbation is caused by the rotational wind stress

at the wind edges.

The vertical velocity can be derived simply by taking the time derivative of the pressure

perturbation (see eq. 9) or (Fennel and Lass 1989, 3.8.13).

wn(r, ϕ, t) = −θ(t)u
2
∗
hn
ρ0 [θ(ρ− ρ0)I1(λnfρ0)K1(λnfρ) + θ(ρ0 − ρ)K1(λnfρ0)I1(λnfρ)]

[
f cos(ϕ)

]
(41)

In equation 41, we can see different features on the right and the left wind edge. There

is constant positive upwelling at the wind edge with positive wind stress curl on the left

wind edge (for positive f on the northern hemisphere), and downwelling on the right wind

edge.

To derive the velocities urn and uϕn the equation set (12) is used and for a more readable

notation, two abbreviations are introduced:

An = [θ(ρ− ρ0)I1(λnfρ0)K1(λnfρ) + θ(ρ0 − ρ)K1(λnfρ0)I1(λnfρ)]

Bn = [−θ(ρ− ρ0)I1(λnfρ0)K0(λnfρ) + θ(ρ0 − ρ)K1(λnfρ0)I0(λnfρ)]

13



Figure 2: pressure perturbation and horizontal velocities of the first baroclinic mode. In
the start, pressure perturbations are visible at the upper and lower wind edges
were wind divergence is largest. Later it is overlayed by the linearly increasing
pressure perturbation at the sides of the wind field. The arrows in the diagram
mark the horizontal velocity. After the onset of the wind, an Ekman transport
establishes which is then covered by the strong pressure perturbations forcing the
water masses flowing against the wind forcing

Angular velocity

The result of the pressure equation is inserted into (12). For the inverse Fourier transfor-

mation, w � f is taken into account again, thus assuming f 2 − ω2 ≈ f 2.

uϕn =
1

f

(
∂

∂ρ
pn −Rn

)
=− 1

f 2

u2
∗
hn

(
ρ0

ρ
An(ρ)θ(t)f sin(ϕ)

)
+

1

f

u2
∗
hn
θ(t)ρ0

[ 1

Rn

Bn(ρ)− 1

ρ
An(ρ)

][
sin(ϕ)− tf cos(ϕ)

]
− 1

f

u2
∗
hn
θ(t)θ (ρ0 − ρ) sin(ϕ)

(42)

The angular velocity can basically be separated into two parts. The sinus terms are the

currents, which run perpendicular to the wind stress. They are constant in time and can

be interpreted as the Ekman transport processes.

The cosine terms are the velocity components, which run in parallel to the wind stress.

This part is growing linearly in time.
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radial velocity

uρn =
1

f

(
Φn −

1

ρ

∂

∂ϕ
pn

)
= − 1

f 2

u2
∗
hn

(
ρ0

[ 1

Rn

Bn(ρ)− 1

ρ
An(ρ)

][
− θ(t)f cos(ϕ)

])
+

1

f

u2
∗
hn
θ(t)θ (ρ0 − ρ) cos(ϕ)

− 1

f

u2
∗
hn
θ(t)

ρ0

ρ
An(ρ) [cos(ϕ) + tf sin(ϕ)]

(43)

The result for the radial velocity looks similar to the result obtained for the angular

velocity. Mostly the cosines and sines are exchanged, so the highest radial velocity is at

the top and bottom side of the wind field, in parallel to the wind stress.

The rotation curlz(τ) of wind stress is strongest at the wind edges. It is mathematically

positive (counter clockwise) at the left side and negative at the right side. Perturbations

with opposite sign can be seen on the left and the right side of the wind field. This per-

turbations are resulting in a downwelling current at the right wind edge and an upwelling

current at the left wind edge. The pressure profile shows a maximum perturbation at

r = r0, resulting in vertical current at r = r0 with a maximum velocity at z = −Hmix.

There are no counter currents beyond the wind edges as seen for the other examples. The

continuity equation does not require these currents to be fulfilled in this example, the

water masses are following a closed circular motion already. The water is upwelled at the

left wind edge, and then flowing (positive u) to the right wind edge. Here it is downwelled

again and returning by a negative u current under the mixed layer to its origin.

The currents fulfill the continuity equation ∂
∂ρ
uρn + uρn

ρ
+ 1

ρ
∂uϕn
∂ϕ

+ λ2
n
∂
∂t
pn = 0.

2.7.3 Rotational, Linear Increasing Wind Field

The next examplaric wind field is a pure rotational wind. The wind stress is defined by

Φ(ρ′, ϕ, z, t) =
u2
∗

Hmix

ρ′θ (z +Hmix) θ (ρ0 − ρ′) θ(t)

R(ρ′, ϕ, z, t) = 0.

(44)
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Pressure perturbation and currents driven by the wind patch
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Figure 3: Resulting pressure perturbation and currents driven by the homogeneous wind
field from section 2.7.2. This plots are done taking the mode sum of the resulting
equations. The parameters for this plot are t = 10h, radius of wind field r =
50km, Hmix = 20m, H = 200m, constant BVF, f = 5 · 10−5s−1, and u∗ =
0.01m/s.
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For a schematic drawing, see (fig. 1ii). It is polar symmetric. The Fourier transformation

and decomposition into vertical modes of the angular part of the wind stress is

Φn,m(r′,m, ω) =2πδm,0
u2
∗
hn
ρ′

i

ω + iε
θ (r0 − r′)

Rn,m(r′,m, ω) =0.

(45)

As the main interest of this work is focused at processes with ω � f , the formal solution

for the modified Bessel differential equation is employed. Applying the formal solution to

the wind fields, after taking the sum over all m’s, the result for the pressure is

pn(r, ϕ) =

∞∫
0

r′G(r, r′)F (r′, ϕ)dr′

=− f

λn
√
f 2 − ω2

u2
∗
hn

i

(ω + iε)2

∞∫
0

G(r, r′)

[(
∂r′r

′2

λn
√
f 2 − ω2

θ (r0 − r′)

)]
dr′

=
f

λ2
n (f 2 − ω2)

u2
∗
hn

−1

(ω + iε)2︸ ︷︷ ︸
γ2

∞∫
0

G(r, r′)
[
2r′θ (r0 − r′)− r′2δ (r0 − r′)

]
dr′

(46)

The integration over r has to be done piecewise for r < r0 and r > r0.

G? r′θ(r− r′) = θ(r− r0)

∫ r0

0
dr′r′G>(r, r′) + θ(r0− r)

[∫ r

0
dr′r′G>(r, r′) +

∫ r0

r
dr′r′G<(r, r′)

]
(47)

For the integrals over the different Bessel functions, the integrals from section (7.1) are

used.

pn(r, ϕ, ω) =γ2

∞∫
0

G(r, r′)
[
2r′θ (r0 − r′)− r′2δ (r0 − r′)

]
dr′

=γ2θ(r − r0)

[
2− r2

0I0(r)

(
2

r0

K1(r0)−K0(r0)

)]
+ γ2θ(r0 − r)

[
r2

0K0(r)

(
2

r0

I1(r0)− I0(r0)

)]
(48)

If the inverse Fourier transformation is done using the approximation ω � f , the equation
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for the pressure perturbation becomes

pn(ρ, ϕ, t) =
θ(t)tu2

∗
λnhn

(
θ(λnfρ− λnfρ0)

[
2− (λnfρ0)2 I0(λnfρ)

(
2

λnfρ0

K1(λnfρ0)−K0(λnfρ0)

)]
+θ(λnfρ0 − λnfρ)

[
(λnfρ0)2K0(λnfρ)

(
2

λnfρ0

I1(λnfρ0)− I0(λnfρ0)

)])
(49)

The vertical velocity is:

wn =
∂

∂t
pn

=
θ(t)u2

∗
λnhn

(
θ(λnfρ− λnfρ0)

[
2− (λnfρ0)2I0(r)

(
2

λnfρ0

K1(λnfρ0)−K0(λnfρ0)

)]
+γ2θ(λnfρ0 − λnfρ)

[
(λnfρ0)2K0(λnfρ)

(
2

λnfρ0

I1(λnfρ0)− I0(λnfρ0)

)])
(50)

angular velocity:

uϕn =
θ(t)tu2

∗
hn

θ(λnfρ− λnfρ0)

[
(λnfρ0)2I1(λnfρ)

(
2

λnfρ0

K1(λnfρ0)−K0(λnfρ0)

)]
−θ(t)tu

2
∗

hn
θ(λnfρ0 − λnfρ)

[
(λnfρ0)2K1(λnfρ)

(
2

λnfρ0

I1(λnfρ0)− I0(λnfρ0)

)]
(51)

radial velocity:

uρn =
θ(t)u2

∗
fhn

θ(λnfρ− λnfρ0)

[
(λnfρ0)2λnfI1(λnfρ)

(
2

λnfρ0

K1(λnfρ0)−K0(λnfρ0)

)]
−θ(t)u

2
∗

fhn
θ(λnfρ0 − λnfρ)

[
(λnfρ0)2K1(λnfρ)

(
2

λnfρ0

I1(λnfρ0)− I0(λnfρ0)

)]
+

1

f

u2
∗
hn
λnfρθ(λnfρ0 − λnfρ)θ(t)

(52)

The pressure perturbation and the currents show no dependency on ϕ, they are polar

symmetric.

The rotation, curlz(τ), of the wind stress is constant and positive within r, thus resulting in

an upwelling current on the northern hemisphere. The pressure profile shows a maximum

perturbation at r = 0 and z = −Hmix, decreasing to the wind edges where it becomes

zero. At the sides of the wind field is an opposite pressure perturbation located, that
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is causing a downwelling current. The upwelled water is leaving the wind influenced

area in the mixed layer to the sides (red colour in the radial velocity profile). A current

directed into the opposite direction is located under the mixed layer, bringing water into

the system (negative radial velocity). The wind driven water masses are undergoing a

circular motion in an otherwise undisturbed ocean.

The whole water body starts to rotate in the wind influenced area, a geostrophic balance

establishes. There are no friction forces considered, therefore the radial velocities reach

unrealistic high values in this model. In reality the pressure perturbation cannot grow

unlimited over time but would be decreased by turbulent downmixing of the pycnocline.

The rotational motion could also be limited by shear friction with the surrounding water

masses and bottom friction.

Neither the radial velocity nor the angular velocity are depended on ϕ. The continuity

equation (12.3) is only balanced by the vertical velocity w and the radial velocity ur. The

angular derivative of the angular velocity is vanishing.

2.7.4 Rotational Wind Forcing with r·exp(-r)-shape

So far only wind fields with a very simplified structure and hard wind edges were consid-

ered. The next example uses a more realistic, rotational wind field. This a continuous

rotational wind field without any wind edges at the sides. It is defined in the following

mathematical form

φ(r, ϕ, z, t) =
u2
∗

Hmix

θ (z +Hmix) re
−rθ(t)

R(r, ϕ, z, t) =0.

(53)

The Fourier transformation and separation into vertical modes gives

φn,m(r,m, ω) =
u2
∗
hn

2i

ω
πδm,0re

−r

Rn,m(r,m, ω) =0

(54)

The resulting pressure perturbation looks different from the one for linear increasing wind

in section 2.7.3. Due to the lack of wind edges, the solution is not separated into areas

by the theta function any longer.
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Pressure perturbation and currents driven by rotational (second) wind field
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Figure 4: Resulting pressure perturbation and currents driven by the linearly increasing
wind field in section 2.7.3. These plots are done taking the mode sum of the
resulting equations in section (2.7.3). The parameters are t = 10h, radius of
wind field r = 50km, Hmix = 20m, H = 200m, constant BVF, f = 5 · 10−5s−1,
and u∗ = 0.01m/s.

pn(r, ϕ, t) =

∫ ∞
−∞

dωγ

∫ ∞
0

dr′Σ∞−∞Gm(r, r′)

(
f
∂

∂r
r′φn

)
eimϕ−iωt

=
u2
∗
hn

1

λn
θ(t)t

1

15
e−r
(
3r2 − 6r − 6

)
pn(ρ, ϕ, t) =

u2
∗
hn

1

λn
θ(t)t

1

15
e−λnfρ

(
3(λnfρ)2 − 6λnfρ− 6

)
Instead an anti exponential function multiplied with a simple polynomial in ρ is the

equation for the whole area. The whole pressure perturbation is growing linearly with
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time, just like before in the case of the radially growing wind field. The in depth structure

looks more complicated now than before. This can be due to the different forcing of the

modes.

The modal vertical velocity is the time derivative of the modal pressure perturbation

wn(ρ, ϕ, t) =
u2
∗
hn

1

λn
θ(t)

1

15
e−λnfρ

(
3(λnfρ)2 − 6λnfρ− 6

)
(55)

The radial velocity is constant in time. The contineous wind forcing also leads to

contineous velocity profiles.

uρn =− 1

f 2

∂

∂t

(
∂

∂ρ
pn

)
+

1

f
φn

=− u2
∗
hn

1

f
θ(t)

1

15
e−λnfρ

(
−3(λnfρ)2 + 12λnfρ

)
+
u2
∗
hn

1

f
θ(t)λnfρe

−λnfρ

=
u2
∗
hn

λnfρ

f
θ(t)

1

15
e−λnfρ (3λnfρ+ 3)

(56)

The angular velocity is, like in the rotational wind field before, linearly growing in time.

uϕn =
1

f

(
∂

∂ρ
pn −Rn

)
=
u2
∗
hn
θ(t)t

1

15
e−λnfρ

(
−3(λnfρ)2 + 12λnfρ

) (57)

The rotation, curlz(τ), of the wind stress has its maximum around ρ = 0 and is positive

within r, thus resulting in an upwelling current on the northern hemisphere. The pressure

profile shows a maximum perturbation in the middle of the wind field at the bottom and

the surface of the water column and is decreasing to the sides. The currents have similar

features as the ones already seen in section 2.7.2. Water is entering the wind influenced

area under the mixed layer, is getting upwelled under the influence of the wind and leaves

the area in the mixed layer.

Still the profiles for the continuous wind field look substantially different from the ones

before. The dotted lines loose their meaning (as a wind edge) in a continuous wind

field and are just included for orientation and comparison to the other wind fields. In

comparison to the upwelling current in section 2.7.2, the upwelling is concentrated near

the origin here. The corresponding downwelling happens far away from the coordinate

origin in this case.

Corresponding to the upwelling in the middle, there is again an outward directed current
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visible in the r-profile. Like for the wind field before in section (2.7.3), the currents fields

are polar symmetric and the water mass starts to rotate.

Pressure perturbation and currents driven by the continuous wind field
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Figure 5: Resulting pressure perturbation and currents driven by the third (continuous)
wind field. These plots are created by taking the mode sum of the resulting
current equations in section (2.7.4). The parameters are t = 10h, radius of
wind field r = 50km, Hmix = 20m, H = 200m, constant BVF, f = 5 · 10−5s−1,
and u∗ = 0.01m/s.
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3 Ecosystem Model

The physical circulation model in the previous chapter resulted in physical equations, de-

scribing the circulation of the seawater in and around an upwelling area. These equations

are forming an important base for the description and modelling of an ecosystem within

an upwelling area.

The aim of the ecosystem model is to be able to take forth simple analytical equations

describing basic biological processes and properties in the 3D-circulation model.

The components of the system will basically be described as tracers in the water, following

the currents of the physical model. The model is a biomass model, not considering the

motion of individuals.

3.1 Table of Variables and Abbreviations for the Ecosystem

Model

In order to keep the terms in the following derivations short and readable, a set of abbre-

viations is used. A table of variables and abbreviations is given here.

symbol meaning

z depth coordinate [m]

ϕ angular coordinate

ρ radial coordinate [m]

R radius of the system [m]

we maximum vertical velocity [m/s]

ws sinking velocity of the detritus (negative) [m/s]

Av diffusion constant [m2/s]

H depth of the ocean (positive)[m]

Hmix depth of the mixed layer (positive)[m]

ld rate constant [1/s]

T ob bottom layer tracer concentration at boundaries of system [mol/kg]

T ib (z) bottom layer tracer concentration in the upwelling system[mol/kg]

T im(z) mixed layer tracer concentration in the upwelling system [mol/kg]

T i(−Hmix) tracer concentration at the bottom of the mixed layer [mol/kg]

N,D,O concentrations of the Tracers Nutrients, Detritus and Oxygen [mol/kg]
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abbreviation long form meaning

w(z) see eq. (73) vertical advection velocity in the system

wt(z) w(z) + ws vert. velocity of sinking detritus in system

ξ ld
H−Hmix

we

3.2 The Tracer Properties

In the following chapters the behavior of different tracers in a water column is described.

A short introduction into the properties of the tracers is given now.

active/passive tracers

An active tracer influences the density of the seawater, it is dissolved in. Salinity is a

good example for an active tracer. The tracers of interest in the following models (oxygen,

detritus, nutrients) are described as passive tracers.

conservative/non-conservative tracers

Conservative tracers are not affected by chemical or biological processes in the water.

For example salinity can well be modeled as a conservative tracer. Oxygen, detritus and

nutrients are consumed/produced and transformed into other tracers. Therefore they are

treated as non-conservative tracers in the model. The total amount of elementary tracers∑
i

Ni is conserved in the process.

3.3 Passive, Sinking Tracer

Now a certain concentration of tracers occurring in the mixed layer is assumed - for

example detritus formed by the phytoplankton and zooplankton. This tracer is heavier

than the surrounding water, giving it a certain sinking velocity ws. The sinking velocity ws

and the upwelling velocity w(z) add up to the combined velocity wt(z). For the moment

a constant upwelling velocity is assumed again so that wt is constant. If this detritus is

now sinking from the mixed layer, the differential equation is

∂

∂z
wtD(z) = 0 (58)
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Setting a starting point for the integration on the bottom of the mixed layer and inte-

grating downwards, the solution for the detritus profile is

−
∫ z

−Hmix
wtD(z) = 0⇒ D(z) = D(−Hmix) (59)

Since detritus gets mineralized while sinking, it is a non conservative tracer. A loss term

proportional to the detritus concentration in the water is introduced. Integrating the

resulting equation in the same way as done before without the loss term, the result is an

exponentially decreasing profile for the Detritus concentration.

∂

∂z
wtD(z) = −ldD(z)

D(z) = D(−Hmix) exp

(
− ld
wt

(z +Hmix)

) (60)

The scale length is wt/ld. For example, for wt = 10m
d

and ld = 0.01d−1, the scale length

would be 1000m.

3.4 Tracer Transport in a round Upwelling Area

A basic transport equation for such tracers considering advection and diffusion of the

tracer and arbitrary sources and sinks is

∂T

∂t
+∇H · uHT +

∂(w + ws)T

∂z
− AH∆HT − AV

∂2T

∂z2
=
∑
i

Si. (61)

Horizontally integrated quantities can be introduced by integrating the equations over the

area of the upwelling system.

〈T (z, t)〉 =

∫ R

0

dr r

∫ 2π

0

dϕT (ϕ, z, t) (62)

In the same way integrated quantities over the lateral boundaries are introduced.

T̄ (z, t) =

∫ 2π

0

dϕRT (t, ϕ, z, t) (63)
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Taking the cylindrical geometry into account by using the operators from eq. (19) and

applying the integrals, we get a tracer equation for our special symmetry.∫ R

0

dr r

∫ 2π

0

dϕ
1

r

∂rurT

∂r
=

∫ 2π

0

dϕ RurT |R0 = urT ,

AH

∫ R

0

dr r

∫ 2π

0

dϕ
1

r

∂

∂r

(
r
∂T

∂r

)
=AH

∫ 2π

0

dϕ

(
r
∂T

∂r

)∣∣∣∣R
0

= AH
∂T

∂r

(64)

With this definitions, we can now express (61) for the integrated quantities.

∂ 〈T 〉
∂t

+ urT +
∂ 〈(w + ws)T 〉

∂z
− AH

∂T

∂r
− AV

∂2 〈T 〉
∂z2

=
∑
i

〈Si〉 (65)

Except for section 3.9, a model in steady state with only advective fluxes is created,

keeping the equations first order and suitable for analytic treatment.

urT +
∂ 〈(w + ws)T 〉

∂z
=
∑
i

〈Si〉 (66)

For a uniformly distributed tracer of concentration T = 1, the volume conservation is

retained.

ur +
∂ 〈w〉
∂z

= 0. (67)

The divergence in the vertical flow is balanced by horizontal fluxes. Now a rigid-lid

boundary condition is introduced for the sea surface, the sea bottom is assumed to be

flat. Thus we can assume, that in the area integrated equations, no vertical fluxes are

existent at the surface and the sea bottom. The vertical derivative if w must change its

sign somewhere in the water column and the vertical integral vanishes.∫ 0

−H

∂ 〈w〉
∂z

dz = 〈w(z = 0)〉 − 〈w(z = −H)〉 = 0 (68)

The vertical boundary conditions make the lateral flux through the boundary conditions

of the system vanish. The tracer concentration in the upwelling area are only changed, if

there is a difference in the typical tracer concentration outside of the upwelling area (T o)

and and the horizontal average tracer concentration inside the upwelling area(T i(z)). For

the fluxes through the lateral boundaries of the upwelling system, an ”upwind” specifica-
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tion is appropriate for a simplified model,

urT = θ(ur)T
i + θ(−ur)T o. (69)

The vertical tracer flux through the mixed layer depth is also modeled using an upwind

specification

wT = θ(w)Tb + θ(−w)Tm. (70)

The hydrodynamical model showed that circular shaped, rotational wind stress leads to

a cylindrical upwelling geometry (see e.g. section 2.7.3). The vertical velocity has its

maximum at z = −Hmix and decreases to the surface and the bottom.

We assume that the wind induces a uniform vertical upwelling velocity at the bottom of

the mixed layer. Recalling the model results from section 2, we are approximating the

vertical velocity within the wind influenced upwelling area with the formula

w(z) = we

(
θ(Hmix + z)

−z
Hmix

+ θ(−Hmix − z)
z +H

H −Hmix

)
. (71)

Further we assume that the mixed layer depth is equivalent to the depth of the eophotic

zone. In section (2.7.3) it can be seen, that the upwelling is sharply limited to the extend

of the wind field. If a forcing only has a rotational component, the resulting currents

have a polar symmetric structure. The continuity equation (3) can be written in polar

coordinates.
1

ρ

∂

∂ρ
(ρuρ) +

∂w

∂z
= 0. (72)

Solving this equation for the radial velocity at the outer boundary of the system, a velocity

is derived, which will be denoted as ur.

ur(z) =
Rwe

2

(
θ(z +Hmix)

1

Hmix

− θ(−z −Hmix)
1

H −Hmix

)

)
(73)

Under the mixed layer a constant current ur is entering the system, in the mixed layer

it is leaving with a constant velocity. The tracer concentrations inside an upwelling area

are influenced by the tracer concentration in the lower layer T ob , the tracer concentrations

inside a downwelling area are influenced by the tracer conctration in the mixed layer T om.

With given concentration of the tracers outside of the system (boundary conditions) e.g.

from measurements, the tracer import into the system can be determined. In this work,

we assume constant tracer concentrations outside of the upwelling area.
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Figure 6: Nutrient and oxygen rich deep-water is entering the upwelling area below the
mixed layer and is advected upwards. It is leading to an increased bioactivity,
detritus is produced in the mixed layer. The detritus is sinking and is mineralized
during its way down, depleting oxygen in the process.

3.4.1 Mineralization and Photosynthesis

To describe the dynamics of oxygen, nutrients and detritus in the system, different equa-

tions for the mixed layer and the lower layer are used. In general, the equations are first

order differential equations with an advection/sinking term and a production/loss term.

An example making a first approach on including diffusion into the equations is given in

section 3.9.The concentration of oxygen and nutrients outside of the system is assumed

to be homogeneous in the bottom layer. For the moment, oxic conditions are assumed for

the whole water body, so that the process of mineralisation uses up this dissolved oxygen

according to

(CH2O)106(NH3)16H3PO4 + 106O2 → 106CO2 + 16NH3 +H3PO4 + 106H2O (74)

thus the oxygen demand to recycle nitrogen in the model is set to be s2 = 106
16

= 6.625 (e.g.

Fennel and Neumann 2004,Martin Schmidt and Eggert 2012). If the molecular oxygen

in the water is used up, other chemical processes are taking over. The oxygen needed to

mineralize detritus is taken from nitrate under anoxic conditions.

(CH2O)106(NH3)16H3PO4+84.4HNO3 → 106CO2+16NH3+42.4N2+H3PO4+148.8H2O

(75)

or, if nitrate is exhausted, sulphate is reduced according to

(CH2O)106(NH3)16H3PO4 +53H2SO4 → 106CO2 +53H2S+H3PO4 +106H2O+16NH3.

(76)

In general, the oxygen consumption is described according to (74) with the stochiometrix

ratio s2. Mainly systems with oxic conditions are considered, but we keep in mind that a
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negative oxygen concentration would correspond to the reactions (75) or (76).

The limiting nutrient in the system is assumed to be nitrogen. It is tracked just by

counting present nitrogen atoms, not differentiating further between nitrate or ammo-

nium. Only the difference between nitrogen in detritus and biologically available nitrogen

is made. In the mixed layer the inverse process, the photosynthesis is happening:

106CO2 + 16NH3 +H3PO4 + 106H2O → (CH2O)106(NH3)16H3PO4 + 106O2 (77)

3.4.2 The Model Equations

To model the depth dependent tracer equations in the model for oxygen, detritus and

nutrients, equation (66) is used. The mineralization process is a sink in the detritus and

the oxygen concentration and a source in the nutrients equation. Boundary values for

the concentrations of oxygen and nutrients (Oo
b , N

o
b ) in the lower layer are introduced.

The concentration of detritus in the deep water outside of the upwelling geometry is

assumed to be zero, thus the lateral advection term in the detritus equation vanishes.

The upstream scheme is used to describe the advective transport of water masses with

this outside concentrations into the model geometry.

πR2 ∂

∂z

(
wt(z)Di

b(z)
)

= −πR2ldD
i
b(z)

2πRuurO
o
b + πR2 ∂

∂z

(
w(z)Oi

b(z)
)

= −πR2lds2D
i
b(z)

2πRuurN
o
b + πR2 ∂

∂z

(
w(z)N i

b(z)
)

= πR2ldD
i
b(z).

(78)

To treat these equations numerically, they can be rewritten in the form

∂Di
b

∂z
=

1

wt(z)

(
−ldDi

b(z)− ∂w(z)

∂z
Di
b(z)

)
∂Oi

b

∂z
=

1

w(z)

(
∂w(z)

∂z

(
Oo
b −Oi

b(z)
)
− lds2D

i
b(z)

)
∂N i

b

∂z
=

1

w(z)

(
∂w(z)

∂z

(
N o
b −N i

b(z)
)

+ ldD
i
b(z)

)
.

(79)

3.5 Derivation of the Detritus Profile

No we will take a closer look at the sinking detritus, we started with in chapter 3.3.

In equation (60), the vertical velocity canceled out, it was assumed to be constant at
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that point. A discussion of a tracer with accelerating sinking speed is done in Kriest

and Oschlies 2008. Here a new approach is made, the vertical velocity of the detritus is

assumed to be a superposition of its falling speed ws (negative value) and the upwelling

velocity w(z) according to (71).

wt(z) = w(z) + ws (80)

Because wt(z) is dependent of the vertical coordinate z, it does not cancel out anymore.

The new equation for Di
b(z) is:

wt(z)Di
b(z) = wt(−Hmix)D

i
b(−Hmix) exp (−q(z,Hmix))

with

q(z,Hmix) =

∫ z

−Hmix

ld
wt(z)

dz

(81)

Solving the integral (81) with the definition for wt(z) according to (80) and (71) we get:

q(z,Hmix) = ld
H −Hmix

we
ln

(
z+H

H−Hmix + ws
we

1 + ws
we

)
(82)

The result for the detritus equation can be simplified further

wt(z)Di
b(z) = wt(−Hmix)D

i
b(−Hmix)

(
1 + ws

we
z+H

H−Hmix + ws
we

)(ld H−Hmixwe
)

Di
b(z) = Di

b(−Hmix)

(
we + ws
wt(z)

)(ld H−Hmixwe
+1)

(83)

The term ld
we

(H − Hmix) appears often in the derivations in this section, therefore the

abbreviation
ld
we

(H −Hmix) = ξ (84)

is introduced.

Forming the limit we → 0:

Di
b(z) = D(−Hmix) exp

(
− ld
ws

(z +Hmix)

)
(85)

30



0 1 2 3 4 5 6 7 8
concentration in mol/kg 1e 5

4000

3500

3000

2500

2000

1500

1000

500

0
de

pt
h 

in
 m

(w_s=-1.7e-4[m/s])
(l_d = 1.0e-7[1/s])

Detritus profiles for different upwelling velocity

without upwelling
w_e = 5.8e-6[m/s]
w_e = 5.8e-5[m/s]
w_e = 1.0e-4[m/s]

Figure 7: Effect of the upwelling velocity on the detritus profile. A constant detritus flux
from the mixed layer into the lower layer is used as a boundary condition here.
Without upwelling, equation (83) equals (60). With increasing upwelling ve-
locity, the detritus is longer suspended in the water so the amount of detritus
reaching the sea floor is lower.

Without vertical velocity variation, the result for the detritus profile equals (60) again.

Evaluating (83) at the bottom z = −H, the detritus concentration is

Di
b(−H) = Di

b(−Hmix)

(
we + ws
ws

)ξ+1

. (86)

If the upwelling velocity is close to the sinking velocity (we → ws), (86) becomes zero.

The detritus is suspended a long time under the bottom of the mixed layer in that case,

leading to an almost complete mineralization before it reaches the ground.

3.6 Advection-Consumption Equation for Oxygen

Having derived the detritus profile, it is now possible to solve the differential equation for

the oxygen profile from equation set (78).

2πRurO
O
b + πR2 ∂

∂z

(
w(z)Oi

b(z)
)

= −πR2s2ldD
i
b

(87)

The oxygen concentration outside of the system is assumed to have a constant concentra-
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tion Oo
b throughout the whole lower water layer. As a passive tracer the oxygen is then

advected into the system and depleted by the mineralisation process. In the mixed layer,

oxygen is released again due to photosynthesis.

By inserting the term for ur from the lateral advection equation (73) and the detritus

profile (83), the equation can be written as

∂

∂z

(
w(z)Oi

b(z)
)

= −lds2D
i
b(z) +

we
H −Hmix

Oo
b (88)

The detritus profile derived in the previous subsection is inserted for Di
b(z) with the

boundary condition of a constant flux at z = −Hmix. Integration from −H to z delivers:

w(z)Oi
b(z)− w(−H)Oi

b(−H)

=s2Dmix(we + ws)

[(
we + ws
wt(z)

)ξ
−
(
we + ws
ws

)ξ]
+ we

z +H

H −Hmix

Oo
b

(89)

The vertical velocity at the sea ground is 0 as defined in (71). With the definitions in

(71) and (80), the result can be rewritten to

Oi
b(z) = Oo

b + s2Dmix

(
we + ws
w(z)

)[(
we + ws
wt(z)

)ξ
−
(
we + ws
ws

)ξ]
(90)

The oxygen is entering the system in the lower layer and is depleted by the minerali-

sation process. Depending on the amount of available nutrients (N), a negative oxygen

concentration can occur in this very simple model.

3.7 Advection-Consumption Equation for Nitrogen

The profile for the nutrients can be derived analogously. Mathematically, the equation

2πRuurN
o
b + πR2 ∂

∂z

(
w(z)N i

b(z)
)

= πR2ldD
i
b(z) (91)

is quite similar to the equation for the oxygen (90), leading to the solution

N i
b(z) = N o

b −Di
b(−Hmix)

(we + ws)

w(z)

[(
we + ws
wt(z)

)ξ
−
(
we + ws
ws

)ξ]
. (92)
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Figure 8: Tracer profiles with given constant flux boundary condition of detritus import
from the surface layer (see subsection 3.3).
Parameters: ws = −5.74 · 10−4m/s we = 2.5 · 10−5m/s (solid line); we =
5.8 · 10−5m/s (dashed line); we = 1.0 · 10−4m/s (dash-dotted line); N o

b =
1.1 · 10−5mol/kg ; Oo

b = 1.5 · 10−4mol/kg; detritusflux from mixed layer:
(we + ws)Dmix = 1.5 · 10−9(m mol)/(s kg); H = 4000m; Hmix = 200m;
ld = 1.7 · 10−7s−1.
The solution for the detritus differential equation (83) has an antiexponential
character. A nutrient assimilation in the system can be seen, the concentration
for the nutrient is ,in the water column within the upwelling area, significantly
higher than the given outside nutrient concentration. The mineralization pro-
cess of the detritus is using up oxygen, a minimum of the oxygen can be seen
directly under the bottom of the mixed layer.
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The concentration profiles for oxygen and nutrient are consistent of the basic tracer con-

centration outside of the system T ob and a term that arises from the mineralization process,

which is depleting oxygen and producing nutrients.

Nutrients are entering the system at the lateral boundaries and are leaving it by advection

in the mixed layer or they are assimilated into biomass.

3.8 Nutrient Accumulation in an Upwelling Area without lat-

eral Export of Nutrients

In section 3.6 and 3.6, a system with a fixed boundary condition for the detritus flux from

the mixed layer was considered. There has been no feedback of the processes happening

in the mixed layer on the water below. Now a new boundary condition at z = −Hmix is

used. All nutrients that are transported into the mixed layer are transformed to detritus

and immediately returned into the lower layer. The system is closed and no nutrients are

leaving the system by advection in the mixed layer any more. The new flux boundary

condition is

weN
i
b(−Hmix) = −(we + ws)D

i(−Hmix). (93)

The general solution for the depth dependent nutrient profile for a given detritus flux into

the system has already been derived (92). Evaluating (92) at the depth z = −Hmix

weN
i
b(−Hmix) = weN

o
b − weDi

b(−Hmix)
we + ws
we

(
1−

(
we + ws
ws

)ξ)
(94)

and inserting the boundary condition (93) for D(−Hmix), we get an equation determining

the flux of nutrients through the surface layer

weN
i
b(−Hmix) = weN

o
b

(
ws

we + ws

)ξ
. (95)

By setting this boundary condition, we don’t have to express the nutrient equation in

dependence of the incoming detritus anymore. Instead the detritus flux is expressed by

nutrient export into the mixed layer. The incoming nutrients themselves are only depen-

dent of the concentration outside of the geometry (and the advective velocities of course).

It is visible now, that there is a nutrient accumulation, increasing the concentration of

nutrients at z = −Hmix by the factor
(

ws
we+ws

)ξ
compared to the background concen-

tration in the surrounding water. The factor is dependent on the vertical velocities, the

34



dept of the lower layer (H −Hmix) and the conversion rate ld. For small ld, the nutrient

enrichment disappears due to the inefficiency of the mineralisation process. In a closed

system, equation (92) with the new boundary conditions becomes

N i
b(z) = N o

b +
we
w(z)

N o
b

((
ws
wt(z)

)ξ
− 1

)
. (96)

The concentration of nutrients consists of the concentration N o
b plus an enrichment term.

Now we can use our flux boundary also for the equation derived in the (82) and get for

the detritus profile in a closed system

Di
b(z) = − we

wt(z)
N o
b

(
ws
wt(z)

)ξ
(97)

and finally also for the oxygen profile

Oi
b(z) = Oo

b − s2
we
w(z)

N o
b

((
ws
wt(z)

)ξ
− 1

)
. (98)

Evaluating the equation for the detritus flux at the bottom of the ocean

πR2wt(−H)Di
b(−H) = −πR2weN

o
b = 2πRuorN

o
b , (99)

the flux equals the one for the nutrients entering the system through the lateral bound-

aries. The only nitrogen sink in this system is the sedimentation of detritus.

It is not trivial to see the behavior of (98) or (96) for we → 0 or at the bottom at z = −H.

The application of l’Hospital’s rule (e.g. Furlan 2010) is useful.

Taking the limiting value for z → −H of the tracer profiles (with the help of l’Hospital’s

rule), the bottom concentrations are derived

N i
b(−H) = N o

b −
ld
ws

(H −Hmix)N
o
b

Oi
b(−H) = Oo

b + s2
ld
ws

(H −Hmix)N
o
b

Di
b(−H) = −we

ws
N o
b .

(100)

The detritus concentration at the bottom is independent of the conversion rate ld and the

depth of the water. It only depends on the sinking velocity of the detritus, the maximum
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Figure 9: Tracer profiles of ecosystem model without advective export in the mixed layer,
derived in subsection 3.8. All nutrients exported into the mixed layer are re-
turned as detritus. Parameters: ws = −5.74 · 10−4m/s; we = 2.5 · 10−5m/s
(solid line); we = 5.8 · 10−5m/s (dashed line); we = 1.0 · 10−4m/s (dash-dotted
line); N o

b = 1.1 ·10−5mol/kg; Oo
b = 1.5 ·10−4mol/kg; H = 4000m; Hmix = 200m;

ld = 1.7 · 10−7s−1.
In this case all the nutrient that is entering the system through the lateral bound-
aries is getting lost by sedimentation of the detritus at the bottom of the sea. A
stronger nutrient enrichment and oxygen minimum zone and more detritus are
forming, compared to fig. 8.

upwelling velocity and the concentration of nutrients outside of the system. This must be

due to the model geometry and the boundary condition, equations (85) and (83) are still

showing a dependency of ld at the sea bottom.

In contrast to the detritus concentration, the bottom concentrations of N i
b and Oi

b are de-

pendent of the conversion rate ld, the thickness (depth) of the lower water layer (H−Hmix)

and the sinking velocity.

It is noteworthy, that the bottom concentrations of N i
b and Oi

b do not depend on the

maximum upwelling velocity we. Recall, that the divergence of the vertical velocity is

balanced by the horizontal advection, thus the nutrient import is proportional to we. Due

to the boundary condition (93) the production of detritus is also proportional to we.

For small we, the vanishing detritus production could lead to the assumption, that the

nutrient enrichment and the oxygen minimum must vanish. However, the duration the

water is staying in the system also becomes very large.

It seems funny, that the equations for the concentrations in steady state are not con-
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Figure 10: Profiles from a more complex numerical model (Modular Ocean Model, model
run 81, at Institut für Ostseeforschung Warnemünde). The concentrations
of detritus, oxygen and nitrate+ammonium are shown at approximately 10◦S,
10◦E, the location of the ”Angola Dome” upwelling area. In greater depth
under the mixed layer, the same features for the tracer profiles can be seen as
for the analytical model.

tinuous, when varying we. For we = 0, no detritus is produced in the model and the

concentrations in the model geometry should be equal to the background concentrations.

The equations (100) show a constant difference from the background concentration, which

does not vanish for we → 0. This interesting behavior should be subject to further inves-

tigations, but it is beyond the scope of this work.

3.9 The Effect of Diffusion

To study the effect of diffusion close to the mixed layer, a diffusion term is added to the

oxygen equation in (78) and the vertical velocity is approximated as constant (see fig.

11) . This approximation can only be applied to a small depth range, otherwise it would

violate the boundary conditions (68). The diffusion Av is approximated as constant in

4z. For a constant upwelling velocity, the divergence and, in consequence, the lateral

advection term are vanishing

w
∂O

∂z
− Av

∂2O

∂z2
= −ldD(z). (101)
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Figure 11: Close to the mixed layer, the tracer equations may be influenced by vertical
mixing. As discussed in section 3.8, the oxygen minimum and the nutrient
maximum can be found in greater depth in more realistic models. The model
equations (78) are therefore extended with a diffusion term. The vertical ve-
locity in a limited depth range 4z close to the mixed layer, is approximated as
constant.

The addition of a diffusion term to the tracer equation increases the order of the differential

equation to second order. Thus, two boundary conditions are required. For the water,

that is getting upwelled from the depth, a typical concentration for oxygen in the deep

ocean

Oi
b(−H1) = Oi

b,deep (102)

is used. In the mixed layer, a constant oxygen concentration is maintained by the contact

with the atmosphere and turbulent mixing

Oi
b(−Hmix) = Oi

b,mix. (103)

The water from the mixed layer is not entering the system by advection, but it affects

the oxygen concentration through the diffusion term and is forming the second boundary

condition to the differential equation 101. Some approaches how to deal with advection-

diffusion equations are presented in David M. Glover, Jenkins, and Doney 2011. With the

profile from equation (85), it is possible to solve the differential equation for a constant

upwelling velocity.

This time we are considering an advection diffusion equation like in (65) but with constant
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Figure 12: This plot shows the solution (111) of the differential equation for oxygen
with an additional diffusion term and constant vertical velocity. The differ-
ent profiles are for the different diffusion constants Av = 2 · 10−4m2

s
(green),

Av = 5 ·10−4m2

s
(black), Av = 10−3m2

s
(red), Av = 2 ·10−3m2

s
(blue). The other

parameters for this plot are: Oi
b,mix = 1.6 · 10−4mol

kg
, Oi

b,deep = 1.8 · 10−4mol
kg

,

Dmix = 3.8 · 10−6mol
kg

, we = 5.8 · 10−7m
s

, wt = −1.74 · 10−4m
s

, ld = 10−6 1
s
,

H = 1200m, Hmix = 200m. The approximation for a constant upwelling ve-
locity can only done in a smaller depth range, so it is not violating the bottom
and surface boundary conditions.
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vertical velocity

πR2we
∂

∂z
Oi
b(z)− πR2Av

∂2Oi
b(z)

∂z2
= πR2ldD

i
b(z) (104)

The homogeneous differential equation can be reduced in order:

∂X(z)

∂z
− we
Av
X = 0 (105)

The solution of the homogeneous reduced differential equation is:

X(z) = c1 exp

(
we
Av
z

)
(106)

A particular solution can be found by variation of the integration parameter:

∂X(z)

∂z
=
∂c1(z)

∂z
exp

(
we
Av
z

)
+ c1(z)

we
Av

exp

(
we
Av
z

)
(107)

Substituting this into the reduced, inhomogeneous differential equation

∂c1(z)

∂z
=
ldD

i
b(z)

Av
exp

(
−we
Av
z

)
≈ ld
Av
Di
b(−Hmix) exp

(
− ld
we + ws

(z +Hmix)−
we
Av
z

) (108)

Finally we get the c1(z) for the particular solution of the the reduced inhomogeneous

differential equation.

X = Xh +Xp = c1 exp

(
w

Av
z

)
− ldD

i
b(−Hmix)

Av

(
ld

we+ws
+ we

Av

) exp

(
− ld
we + ws

(z +Hmix)

)
(109)

Integrating over the depth gives the solution of the original (non reduced) differential

equation

Oi
b(z) =

Av
we
c2 exp(

(
we
Av
z

)
− Di

b(−Hmix)

Av
we+ws

(
ld

we+ws
+ we

Av

)
︸ ︷︷ ︸

b

exp

(
− ld
we + ws

(z +Hmix)

)
+ c3.

(110)

By setting the boundary conditions (102) and (103) for the bottom of the mixed layer

and the depth −H1 (which must not be the bottom in this case because of the assumed
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constant w), it follows

Oi
b(z) = Oi

b,mix +

[
Oi
b,deep −Oi

b,mix +
D(−Hmix)

b

(
1− exp

(
− ld
wt

(Hmix −H)

))]

·
1− exp

(
we
Av

(z +Hmix)
)

1− exp
(
we
Av

(−H +Hmix)
) − D(−Hmix)

b

(
1− exp

(
− ld
wt

(z +Hmix)

))
.

(111)

The profile of the oxygen concentration (see fig. 10) shows a minimum somewhat below

the mixed layer. A comparison with profiles from a more complex numerical model (see

fig. 10) shows that this process of downmixing of oxygen from the mixed layer is indeed

present. Stronger upwelling velocity is moving the oxygen minimum upwards. More

diffusion is bringing the oxygen minimum zone downwards. Less diffusion in combination

with a low upwelling velocity (and a high detritus concentration) is followed by a distinct

oxygen minimum.

4 Results and Summary

Beginning with the linearized Boussinesq equations, wind driven ocean currents were de-

rived. The volume forcing of the winds is confined to the mixed layer, and in consequence

the upwelling velocity’s maximum we is close to the bottom of the mixed layer.

The water circulation found follows two different patterns. In the first (circular) wind field

with homogeneous wind (38), the rotation of the wind field at the two wind edges has a

different sign, causing upwelling on one side and downwelling on the other. Integrated

over the whole area, the upwelling vanishes, just like the wind rotation does.

The fact that the area integrated upwelling vanishes is also the reason, that there are no

counter currents outside of the wind field in contrast to the other wind-driven current

fields. A transport of water from the upwelling area to the downwelling area is estab-

lishing and a counter directed current in the depth is transporting the water back to its

origin (see fig 3).

The other two analyzed wind fields (44) and (53) are polar symmetric. Polar symmetric

wind fields also cause polar symmetric current-fields in the f-plane approximation. For

cyclonic wind forcings, the water is entering the wind influenced area below the bottom of

the mixed layer and leaving it to the sides in the mixed layer. For the analyzed rotational

winds, the maximum of the upwelling is happening in the middle of the upwelling area,

decreasing to the lateral boundaries (see figures 4 and 5).

The currents caused by a purely rotational, cyclonic wind forcing were used as a scheme
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to describe the advection of tracers in a simple ecosystem model.

For the rotational (polar symmetric) wind structures, the pressure perturbation has the

same sign within the whole wind influenced area, causing large scaled up/downwelling.

The pressure perturbations caused by the wind fields always include one term that is

growing linearly in time. The linearly growing term in the pressure equation causes a

constant upwelling. In our simple model, the pressure perturbation can grow indefinitely

large and is in geostrophic balance with an also linearly growing angular velocity. There

is no process stopping the pycnocline from getting constantly more elevated. To make the

model more realistic, turbulent downmixing of the pycnocline could be included into the

equations.

For the influence of the wind driven tracer transport processes on the ecosystem, the

angular rotation velocity of the mass in a polar symmetric system is irrelevant. There are

no angular tracer gradients.

Assuming a cyclonic wind forcing like in subsection 2.7.3 and 2.7.4 is acting on the open

ocean, water masses are transported into the upwelling area in the lower layer. With the

currents follow tracer concentrations typical to the deep open ocean. This concentrations,

taken from measurements or more advanced numerical models, are forming the boundary

conditions of the model system. The upwelling of free nitrate and oxygen from the deep

water causes an increased ecosystem activity.

To describe the profile of the detritus flux, the empirical ”Martin Profile” (Martin et al.

1987) is often used. Another approach is a given detritus import with a constant miner-

alization rate and constant sinking speed (see e.g. Kriest and Oschlies 2008 or Capone

et al. 2008). The approach used in this work is a linear velocity profile. It depends on

Dmix,ws,we and ld. For a vanishing upwelling velocity we → 0, the detritus profile derived

in (83) changes its shape into the form mentioned in (85), with a decay length scale of

ws/ld.

The depth profiles for the tracers show an oxygen minimum and a nitrate maximum at

the bottom of the mixed layer. The displacement for the oxygen minimum (typically it

lies some hundred meters under the mixed layer) can be explained by the lack of turbulent

mixing in the model. In a simpler model with constant upwelling in subsection 3.9, it was

shown that the inclusion of a diffusion term parameterizing turbulent mixing can shift

the depth of the oxygen minimum into a realistic depth.

Already with a fairly simple model, only considering the tracers oxygen, nutrients, de-

tritus and a mineralization process of the detritus, it is possible to model the nutrient

accumulation and the oxygen minimum zone commonly seen within an upwelling area

(see fig. 8). The first approach in this work has been, to set a flux boundary condition

for the amount of incoming detritus. In that case, there is no feedback of the processes
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happening in the mixed layer on the lower layer. The mineralization process is assumed

to be proportional to the abundance of detritus. The initial boundary concentrations

of oxygen and nutrients do not have an influence on the detritus concentration and the

mineralization process in the model equations.

The next step was to close the system with another flux boundary (93) between the mixed

layer and the lower layer. The assumption, that all the nutrients that are leaving the sys-

tem through the bottom of the mixed layer are returned as detritus, removes a sink of

nutrients from the mixed layer.In the equations before, it was assumed that the nutrient

export into the surface layer, that exceeds the detritus import, is lost by advection out

of the geometry. The new assumption describes a system, where all nutrients entering

the mixed layer are immediately processed into detritus. The missing advection sink in

the mixed layer is leading to a stronger nutrient accumulation in the wind influenced

upwelling area. In fact, this accumulation is happening in the whole water column, and

not only close to the mixed layer (see fig. 9).

For the model with the flux boundary (all nutrients return in the form of detritus), the

limiting values for the sea bottom z = −H were derived in equation set (100). The third

relation of (100) shows, that all the imported nutrients are sedimented as detritus. For a

system without advective loss terms in the mixed layer, sedimentation becomes the only

possible loss term. The equality of the lateral import of nutrients and the export into the

sediment balances the equations in steady state.

It is remarkable, that the upwelling velocity does not have any influence at the nutri-

ent and oxygen concentrations (100) at the sea bottom. The bottom concentrations are

instead only determined by the conversion constant ld, the sinking velocity ws and the

thickness of the lower water body (H −Hmix). Without upwelling, the tracer concentra-

tions for oxygen (98) and nutrients (96) inside of the geometry are expected to be the

background concentrations. In equation set (100) however, these concentrations have a

constant difference from the background concentration, which does not vanish for we → 0.

To find out whether this discontinuous behavior for varying we is persistent in different

derivations, and how it can affects other models, further investigation is needed.

In an upwelling area, the strong oxygen minimum is not only due to the nutrient enrich-

ment and ecosystem activity, but also due to the longer suspension of the detritus in the

water. If the vertical velocity is in the same order of magnitude as the sinking velocity,

this gives substantially more time for detritus mineralization. Less detritus is reaching

the ground and more oxygen is used up in the mineralization process.

Comparing the shape of the profiles with the ones from model runs of a more complex

numerical model (fig. 10, Modular Ocean Model, model run 81, IOW), the same basic

features in the shape of the profiles can be seen. The differences close to the mixed layer

43



were discussed in section 3.9. The similarity of the profiles is a validation, that some of

the most important processes in the deep water were covered by the analytical model.
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Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne
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7 Annex

7.1 Bessel Integrals

∫
xJ0(x)dx = xJ1(x);

∫
xY0(x)dx = xY1(x)∫

xI0(x)dx = xI1(x);
∫
xK0(x)dx = −xK1(x)

7.2 Detailed derivations of equations in section 2

Pressure perturbation for the wind patch (section 2.7.2):

p(r, ϕ, t) =

∫ ∞
−∞

∫ ∞
0

∞∑
m=−∞

r′Gm(r, r′)F (r′, ϕ, ω)eimϕ−iωtdr′dω

=

∫ ∞
−∞

γ

∫ ∞
0

∞∑
m=−∞

Gm(r, r′)θ(r0 − r′)[
−iω ∂

∂r′
r′R−mωφ+ f

∂

∂r′
r′φ+ imfR

]
eimϕ−iωtdr′dω

=

∫ ∞
−∞

γ

∫ ∞
0

∞∑
m=−∞

Gm(r, r′)θ(r0 − r′) [−iωR−mωφ+ fφ+ imfR] eimϕ−iωtdr′dω

−
∫ ∞
−∞

γ

∫ ∞
0

∞∑
m=−∞

Gm(r, r′)δ(r0 − r′)
[
fr′φ− iωr′R

]
eimϕ−iωtdr′dω

=

∫ ∞
−∞

2γ
u2∗
hn

i

ω
π

∫ ∞
0

[iω sin(ϕ)− iω sin(ϕ) + f cos(ϕ)− f cos(ϕ)] e−iωtdr′dω (∗Ansatz n.)

−
∫ ∞
−∞

γ

∞∑
m=−∞

Gm(r, r0)
[
fr0φ− iωr0R

]
eimϕ−iωtdω

= −
∫ ∞
−∞

γ

∞∑
m=−∞

Gm(r, r0)
[
fr0φ− iωr0R

]
eimϕ−iωtdω

= −u
2
∗
hn

∫ ∞
−∞

γG1(r, r0)
iπ

ω

[
2fr0 cos(ϕ) + 2iωr0 sin(ϕ)

]
e−iωtdω

=
u2∗
hn

∫ ∞
−∞

G1(r, r0)
1

ω2

1r0

λ
√
f2 − ω2

[
f cos(ϕ) + iω sin(ϕ)

]
e−iωtdω

=
u2∗
hn

∫ ∞
−∞

G1(r, r0)
ρ0
ω2

[
f cos(ϕ) + iω sin(ϕ)

]
e−iωtdω

Näherung

=
u2∗
hn
ρ0

∫ ∞
−∞

1

ω2
G1(λfρ, λfρ0)

[
f cos(ϕ) + iω sin(ϕ)

]
e−iωtdω

= θ(t)
u2∗
hn
ρ0 [θ(ρ− ρ0)I1(λfρ0)K1(λfρ) + θ(ρ0 − ρ)K1(λfρ0)I1(λfρ)]

[
sin(ϕ)− tf cos(ϕ)

]
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Pressure perturbation for the lateral linear increasing wind field (section 2.7.3):

p(r, ϕ) =

∞∫
0

r′G(r, r′)F (r′, ϕ)dr′

= − 1

iω̃

f

λ
√
f2 − ω2

Φ2
∗

hn

i

ω + iε

∞∫
0

G(r, r′)

[(
∂r′r

′2

λ
√
f2 − ω2

θ (r0 − r′)

)]
dr′

=
f

λ2 (f2 − ω2)

Φ2
∗

hn

−1

ω2 + 2iωε− ε2

∞∫
0

G(r, r′)
[(
∂r′r

′2θ (r0 − r′)
)]
dr′

=
f

λ2 (f2 − ω2)

Φ2
∗

hn

−1

(ω + iε)
2︸ ︷︷ ︸

γ2

∞∫
0

G(r, r′)
[
2r′θ (r0 − r′)− r′2δ (r0 − r′)

]
dr′

Case differentiation:

G ? r′θ(r − r′) = θ(r − r0)

∫ r0

0

dr′r′G>(r, r′) + θ(r0 − r)
[∫ r

0

dr′r′G>(r, r′) +

∫ r0

r

dr′r′G<(r, r′)

]

For the integrals, the formulas from section 7.1 are used.

p(r, ϕ, ω) = γ2

∞∫
0

G(r, r′)
[
2r′θ (r0 − r′)− r′2δ (r0 − r′)

]
dr′

= 2γ2θ(r − r0)K0(r)

∫ r0

0

dr′r′I0(r′)

+2γ2θ(r0 − r)
[
K0(r)

∫ r

0

dr′r′I0(r′) + I0(r)

∫ r0

r

dr′r′K0(r′)

]
−γ2r20 [θ(r − r0)I0(r0)K0(r) + θ(r0 − r)K0(r0)I0(r)]

= 2γ2θ(r − r0)r0K0(r)I1(r0) + 2γ2θ(r0 − r) [rK0(r)I1(r)− r0I0(r)K1(r0) + rI0(r)K1(r)]

−γ2r20 [θ(r − r0)I0(r0)K0(r) + θ(r0 − r)K0(r0)I0(r)]

= γ2θ(r0 − r)
[
2rK0(r)I1(r)− 2r0I0(r)K1(r0) + 2rI0(r)K1(r)− r20K0(r0)I0(r)

]
+γ2θ(r − r0)

[
2r0K0(r)I1(r0)− r20I0(r0)K0(r)

]
= γ2θ(r0 − r)

[
2r

(
1

r

)
− r20I0(r)

(
2

r0
K1(r0) +K0(r0)

)]
+γ2θ(r − r0)

[
r20K0(r)

(
2

r0
I1(r0)− I0(r0)

)]
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Pressure perturbation for the conineous wind field (section 2.7.4):

p(r, ϕ, t) =

∫ ∞
−∞

γ

∫ ∞
0

Σ∞−∞Gm(r, r′)

(
f
∂

∂r
r′φ

)
eimϕ−iωtdr′dω

=
u2∗
hn

2πi

∫ ∞
−∞

γ

ω

∫ ∞
0

G0(r, r′)

(
f
∂

∂r
r′r′e−r

′
)
e−iωtdr′dω

= −u
2
∗
hn

1

λ

∫ ∞
−∞

1

ω2

∫ ∞
0

G0(r, r′)
(
2r′ − r′2

)
e−r

′
e−iωtdr′dω

=
u2∗
hn

1

λ
θ(t)t

∫ ∞
0

G0(r, r′)f
(
2r′ − r′2

)
e−r

′
dr′

=
u2∗
hn

1

λ
θ(t)tK0(r)

∫ r

0

I0(r′)f
(
2r′ − r′2

)
e−r

′
dr′

+
u2∗
hn

1

λ
θ(t)tI0(r)

∫ ∞
r

K0(r′)f
(
2r′ − r′2

)
e−r

′
dr′

=
u2∗
hn

1

λ
θ(t)tK0(r)

([2r′e−r
′

3
[r′I0(r′) + (1 + r′)I1(r′)]

]r
0

−

[
r′e−r

′

15

[
(−2r′ + 3r′2)I0(x) + (4 + 4r′ + 3r′2)I1(r′)

]]r
0

)
+

u2∗
hn

1

λ
θ(t)tI0(r)

([2r′e−r
′

3
[r′K0(r′)− (1 + r′)K1(r′)]

]∞
r

−

[
r′e−r

′

15

[
(+3r′2 − 2r′)I0(x)− (4 + 4r′ + 3r′2)I1(r′)

]]∞
r

)
=

u2∗
hn

1

λ
θ(t)tK0(r)

([2re−r

3
[rI0(r) + (1 + r)I1(r)]

]
−

[
re−r

15

[
(3r2 − 2r)I0(r) + (4 + 4r + 3r2)I1(r)

]] )
− u2∗

hn

1

λ
θ(t)tI0(r)

([2re−r

3
[rK0(r)− (1 + r)K1(r)]

]
−

[
re−r

15

[
(3r2 − 2r)K0(r)− (4 + 4r + 3r2)K1(r)

]] )
=

u2∗
hn

1

λ
θ(t)t

2re−r

3
((1 + r) (K0(r)I1(r) + I0(r)K1(r)))

− u2∗
hn

1

λ
θ(t)t
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)
=

u2∗
hn
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θ(t)t
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e−r

(
3r2 − 6r − 6

)
p(ρ, ϕ, t) =

u2∗
hn

1

λ
θ(t)t

1
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e−λfρ

(
3(λfρ)2 − 6λfρ− 6

)
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